
Summary of research and results from the
ENSEMBLES project

ENSEMBLES
Climate change and its impacts
at seasonal, decadal and centennial timescales



Project and Contact Information

ENSEMBLES is an integrated research project running from 2004 to 2009 and is coordinated by the Met Office Hadley
Centre. It has produced probabilistic projections of climate for Europe to help inform researchers, decision makers,
businesses and the public with climate information from the latest climate modelling and analysis tools.

ENSEMBLES is funded by the European Commission under the 6th Framework Programme Priority: Global Change and
Ecosystems.

This report summarises the science research and results of the ENSEMBLES project. For more information please see
www.ensembles-eu.org or contact us using the details below:

ENSEMBLES project office
Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

Paul van der Linden Prof John F.B. Mitchell Pip Gilbert
ENSEMBLES Director ENSEMBLES Coordinator ENSEMBLES Secretary
+44 1392 884163 +44 1392 884604 +44 1392 884603
paul.vanderlinden@metoffice.gov.uk john.f.mitchell@metoffice.gov.uk ensemblesfp6@metoffice.gov.uk

European Commission
Climate Change and Environmental Risks Unit, General Directorate for Research, European Commission, CDMA 3/006,
B-1049 Brussels, Belgium

Dr Philippe Tulkens
EC Project Officer
philippe.tulkens@ec.europa.eu

Editors
Paul van der Linden and John F.B. Mitchell of the Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

Citation
Sections can be referenced by their title and authors, if citing the whole report please use:
van der Linden P., and J.F.B. Mitchell (eds.) 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research
and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK. 160pp.

Copyright and use of material and data
© 2009 ENSEMBLES
Material in this publication may be reproduced on condition that due credit is given, such as: “The ENSEMBLES work
reproduced here is from the EU-funded FP6 Integrated Project ENSEMBLES (Contract number 505539).”
See the ENSEMBLES data policy for information about data use and its acknowledgement:
http://ensembles-eu.metoffice.com/docs/Ensembles_Data_Policy_261108.pdf

Contract number: GOCE-CT-2003-505539
Website: http://www.ensembles-eu.org
Project duration: 1 September 2004 to 31 December 2009
Full list of project partners is given on page 158

Credit and caption for cover picture:
The front cover of this report shows some European cities relocated to places where the current climate is the same as
what the projected climate will be for that city in 2071–2100. The methodology involves running a multi-model ensemble
of Regional Climate Models out to 2100 against a 1961–1990 climatological baseline and comparing the city climates
between the two periods. The comparison takes into account temperature, precipitation and seasonal characteristics for
each city. The cities are superimposed on a background of temperature anomaly for the 2071–2100 period of the
ENSEMBLES multi-model average for Europe, Figure A1.13. Thanks go to the following people:
Stephane Hallegatte, Météo-France and CIRED, for developing the technique and producing the map,
Else van den Besselaar, KNMI, for providing the observed climate data,
Ole Christensen, DMI, for providing the temperature and rainfall projections for the end of the century.



ENSEMBLES

1

Contents

1. Introduction to the ENSEMBLES project 3

2. Executive Summary 7

3. Development of ensemble prediction systems [Research Theme 1] 19

4. Production of seasonal to decadal hindcasts and climate change scenarios 35
[Research Theme 2A]

5. Formulation of very-high-resolution regional climate model ensembles 47
for Europe [Research Theme 3]

6. Downscaling methods, data and tools for input to impacts assessments 59
[Research Theme 2B]

7. Understanding the processes governing climate variability and change, 79
climate predictability and the probability of extreme events [Research Theme 4]

8. Evaluation of the ENSEMBLES Prediction System [Research Theme 5] 95

9. Assessments of impacts of climate change [Research Theme 6] 107

10. Scenarios and policy implications [Research Theme 7] 131

Appendices

1: Examples of ENSEMBLES climate descriptions and projections 139

2: ENSEMBLES datasets 155

3: ENSEMBLES partners and affiliates 158

4: Contributors 160





3

1.1 This report

This report is a summary of the research and results of the
ENSEMBLES climate change project. The content
preferentially includes findings that have not already been
published and/or that are of greatest interest to the users of
climate research. This approach is justified by the large size and
long duration of the project, meaning that not every piece of
work or every result can be reported in detail here. In this report,
the balance between describing the methods and techniques
developed during the course of the project and the results arising
from the research is about equal.

This Introduction covers the aims, background and construction
of the ENSEMBLES climate change project. It also acts as a
‘road map’ to the main body of the report, which is structured
along the lines of the project’s Research Themes, although the
order in which they are presented follows the research
development rather than the numerical order of the themes. The
Executive Summary is written around the projects aims, which
are described in Section 1.4.

A selection indicative of the type of spatial results for projected
climate in Europe produced by the project can be found in
Appendix 1; while a description of the datasets produced by the
project is given in Appendix 2.

1.2 Climate change

Knowledge of climate and weather has always been important
to society, as it is upon them that human activity and life on
Earth depend. In the last century it was recognised that human
activity is changing the composition of the atmosphere, and
subsequently that the climate (both global and regional) is also
changing. The global average temperature today is 0.7°C higher
than in pre-industrial times and is the main measure of this
change. Within the last decade the causal link between
increasing concentrations of anthropogenic greenhouse gases
in the atmosphere and the observed changes in temperature has
been scientifically established.

Impacts from climate change on natural and human systems are
now being observed both globally and regionally. Scenarios of
possible futures indicate that these impacts may increase,
especially if anthropogenic emissions of greenhouse gases
continue to rise unchecked. Some of these future impacts are
already unavoidable, due to the lifetime of emissions and the
nature of the climate system. Thus there is interest in how to
develop strategies for mitigating and adapting to climate

change. The European Union has the stated goal of keeping
global anthropogenic warming at a level that is under 2°C above
pre-industrial levels, while the UNFCCC aims to prevent
dangerous anthropogenic interference with the climate system.

1.3 Climate research

Modelling climate and projected changes in climate is a
resource-intensive research activity, usually involving
supercomputers and a multidisciplinary approach. These
disciplines range from socio-economics (scenarios), to
computing, physics, chemistry (climate models) and Earth and
life sciences (impact models), as well as statistics and
probability (analysis). To set up and run a climate
‘experiment’, using a computer model to simulate 100 years of
climate evolution on a global scale, can take weeks or months.
Analysis of the results takes even longer.

In the European Union there are a finite number of institutes
that conduct research into climate and climate change. Some
institutes specialise in global modelling, while others focus on
a regional approach. There are many more research centres
which look at the potential impacts of climate change over a
range of systems and sectors. There are also climate centres
which study the observed historical climate, whose data are
used to validate climate models. Finally there are the centres
whose socio-economic research is used as the background for
climate projections. The ENSEMBLES project represents the
first occasion on which this spectrum of researchers was
brought together to work with a single purpose.

1.4 Aims of the ENSEMBLES project

Against this background, the European Commission initiated
the ENSEMBLES project to help inform researchers, decision
makers, businesses and the public by providing them with
climate information obtained through the use of the latest
climate modelling and analysis tools. The value, and core, of
the ENSEMBLES project is in running multiple climate
models (‘ensembles’); a method known to improve the
accuracy and reliability of forecasts. The project output is a
range of future predictions assessed to decide which of the
outcomes are more likely (probable) than the others. This
probabilistic information will assist policy makers, at all levels,
in determining future strategies to address climate change.

The project’s principal objective is to allow the uncertainty in
climate projections to be measured, so that a clearer picture
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of future climate can be formed. The specific aims leading
from this are:

• to develop an ensemble prediction system for climate
change based on the principal state-of-the-art, high-
resolution, global and regional Earth system models
developed in Europe, validated against quality-controlled,
high-resolution gridded datasets for Europe, to produce for
the first time an objective probabilistic estimate of
uncertainty in future climate at the seasonal to decadal and
longer time-scales;

• to quantify and reduce the uncertainty in the representation
of physical, chemical, biological and human-related
feedbacks in the Earth system (including water-resource,
land-use and air-quality issues, and carbon cycle
feedbacks);

• to maximise the exploitation of the results by linking the
outputs of the ensemble prediction system to a range of
applications, including agriculture, health, food security,
energy, water resources, insurance and weather risk
management.

1.5 Background to the ENSEMBLES project

The ENSEMBLES project is funded by the European
Commission (EC), and runs from September 2004 to
December 2009. ENSEMBLES is a flagship project of the
EC’s 6th Framework Programme (EC FP), an integrated
project under the thematic sub-priority ‘Global Change and
Ecosystems’ (contract number GOCE-CT-2003-505539).

The project is led by the UK Met Office and comprises a
consortium of 66 institutes from 20 countries, mostly from
Europe, although partners from across the world are also
involved. In addition, 30 other organisations, mostly from
Europe, have joined the project as affiliates. Affiliate status
allows these organisations to engage with and contribute to
the research programme, but without financial commitment.
Lists of project partners and affiliated institutes are given in
Appendix 3.

The EC has contributed €15 million of funding to the
ENSEMBLES project. In addition, some partners were self-
funding (receiving no money from the EC), either paying for
their contribution themselves or being funded by governments
outside the EC. A further 35 partners matched the funding that
they received from the EC. The total amount spent on the
project came to €22.8 million, which funded over 250 person-
years of work.

The size, duration and budget of ENSEMBLES make it one of
the biggest climate change research projects ever conducted.
Although there are larger international programmes, these
either assess or coordinate research but do not conduct any
research themselves.

The ENSEMBLES work programme included coordination
with bodies such as CMIP, NARCCAP, WCRP (CLIVAR,
GEWEX), CFMIP, C4MIP, BALTEX and the IPCC.
Collaboration with other EC FP projects was also an integral
part of ENSEMBLES and, as this was built into the project at
the design stage, it is described in the next section.

The work carried out in the ENSEMBLES project builds upon
earlier EC projects such as PRUDENCE, STARDEX, MICE,
and DEMETER, which can be considered as precursors of
some of the components of the ENSEMBLES project.

1.6 Project construction

The ENSEMBLES project was designed by the partners in the
consortium, who then went on to conduct the work. The
construction of the project plan was top-down and driven by
the science. This method was used to achieve a fully integrated
research programme across the full range of disciplines and
topics included in the project.

The project is constructed around ten Research Themes (RTs)
which are summarised by name and purpose as follows:

RT0 Project integration, management and promotion
RT1 Development of the ENSEMBLES Prediction System

(EPS)
RT2A Production of seasonal to decadal hindcasts and

climate change scenarios: ‘Model Engine Part 1’
RT3 Formulation of very-high-resolution Regional Climate

Model ensembles for Europe
RT2B Production of regional scenarios for impact

assessment: ‘Model Engine Part 2’
RT4 Understanding the processes governing climate

variability and change, climate predictability, and the
probability of extreme events

RT5 Independent comprehensive evaluation of the
ENSEMBLES simulation–prediction system against
observations/analyses

RT6 Assessments of impacts of climate change
RT7 Scenarios and policy implications
RT8 Outreach, education and training

Figure 1.1 shows the relationships and linkages between the
ten Research Themes. The project structure worked well, even
when the project methods were changed part way through the
programme. For example, RT1 developed an alternative to the
Ensemble Prediction System, known as the ‘perturbed physics
ensemble’; a method whose results were incorporated into the
existing flow of information through the RTs to add an extra
set of results.

At the core of the ENSEMBLES integrated project was the
development of the first global, high-resolution, ensemble-
based, modelling system for the prediction of climate change
and its impacts. The Earth system models were combined into
a multi-model ensemble system, with common output. for
seasonal, decadal and centennial time-scales. This work was
carried out in RT1.

The purpose of RT2A was to produce sets of climate
simulations with several models and to provide the multi-
model results needed for the other Research Themes. The
results from RT2A were used for validation (RT5), studies of
feedbacks in the Earth system (RT4), as well as boundary
conditions and forcing fields for regional model simulations
(RT3/RT2B). The simulations covered time-scales ranging
from seasons to decades and centuries. Two streams of Global
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Climate Model (GCM) runs were produced: the first for the
ensemble prediction system and the second using later models
incorporating new features such as carbon cycle feedbacks.
The development and running of the E1 stabilisation scenario
was led by RT2A.

RT3 had responsibility for providing improved climate model
tools developed in regional models, at spatial scales of 25 and
50 km on a Europe-wide scale. Analogous to RT1, and using
boundary conditions from RT2A, RT3 produced a multi-
model ensemble-based system for regional climate prediction
at multi-decadal time-scales to be applied in RT2B.

Along with RT2A, RT2B provided the ‘model engine’ of the
ENSEMBLES project. RT2B constructed probabilistic high-
resolution regional climate scenarios using dynamical and
statistical downscaling methods in order to add value to the
model output from RT1 and RT2A and to exploit the full
potential of the Regional Climate Models (RCMs) developed
in RT3. The outputs are in formats appropriate for input to the
RT6 assessments of the impacts of climate change as well as
for more general end-users and stakeholders.

The purpose of RT4 was to advance understanding of the basic
science issues at the heart of the ENSEMBLES project. Using
the outputs of RT2A and RT2B, the work focused on the key
processes that govern climate variability and change, and the
predictability of climate on time-scales of seasons, decades
and beyond. Particular attention was given to understanding
feedbacks in the climate system that may lead to climate
‘surprises’ and extreme events. The improved scientific

knowledge gained in RT4 was fed back into further
development of the models used in RT1 and RT3.

The development of the ensemble-based prediction system and
the production of regional climate scenarios were subjected to
rigorous evaluation. RT5 carried out a comprehensive and
independent evaluation of the performance of the
ENSEMBLES Prediction System developed in RT1 and RT3
and run through the model engines of RT2A and RT2B, against
analyses/observations. This included the production of the high-
resolution observational datasets necessary to perform this task.

RT6 used the output from the ensemble-based prediction
system developed in RT1 and RT3, and run through the model
engines of RT2A and RT2B, to carry out impacts assessments.
Its primary objective was to simulate the potential impacts of
future climate change during the 21st century on natural
systems and human activities at different scales under
alternative scenarios of future climate. This included, for
example, the integration of process models of impacts on the
natural and managed global environment into Earth system
models, the results from which were fed back into the model
development in RT1. However, the main output from RT6 was
aimed at the public and stakeholder community, and was
disseminated through RT8.

The main aim of RT7 was to take the first step towards the
integration of the human dimension into Earth system models.
This was done by including the feedback of climate change, as
produced by the ensemble-based prediction system developed
in RT1 and RT3 and run through the model engines of RT2A

1 Introduction to the ENSEMBLES project
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and RT2B, on the emissions scenarios driving the climate
models. RT7 also provided RT1 with ensembles of emissions
and land-use scenarios with and without mitigation policies, as
well as scenarios of adaptive capacity.

The two remaining themes, RT0 and RT8, were concerned
with the management and outreach of the project, respectively.
The former included, in addition to management, ensuring that
the project was integrated both internally and with external
research bodies and programmes. RT0 was also responsible
for promoting the project, so that the research and results were
publicised and made available to the scientific research
community, policy makers, users of climate information, and
other stakeholders. RT8 ran a programme of education and
training using ENSEMBLES research, implemented through
seminars, workshops, summer schools, publications, and
courses for PhD students.

The Research Themes were divided into Work Packages
(WPs), indicating the level at which the work targets and
responsibilities lie. Some partners were involved in more than
one WP, which also helped to keep the flow of information
and results moving. The linkages also allowed for feedbacks
and checks between WPs to ensure the quality and timeliness
of the research. This structure was supported by an annual

project plenary, frequent inter- and intra-RT meetings, plus
joint meetings between WPs and other organisations for
specific goals. There were also many electronic
communication tools employed to facilitate knowledge
transfer within the project (e.g., web pages, Wiki pages,
newsletters, email groups, telephone conferences). The
management and outreach aspects of the project were RTs in
their own right, which ensured that they had suitable weight
and integration in the project.

Strong research links between ENSEMBLES and other EC
FP6 projects were also built into the plan. The following
projects had shared goals: AMMA, CECILIA, CIRCE,
CLAVIER and DYNAMITE, which were helped in many
cases by certain institutes being involved in both projects. Of
these, the AMMA project had the best-defined interactions
with ENSEMBLES, with a common region for modelling and
observational verification. See Section 5.3.3 for more
information.

Lastly, the institutional composition of the ENSEMBLES
project includes organisations from the private sector and
international arenas. Gender equality was actively promoted at
all levels within the project, and there was a successful
mentoring scheme for young scientists.
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2.1 Introduction

The ENSEMBLES project is large and covers almost the entire
spectrum of climate change sciences. It brought together re-
searchers from different, but connected disciplines to work on
a common goal – to construct an end-to-end climate prediction
system for the first time. This summary is written around the
aims of the project (Section 1.4) as these are the threads that run
through the project providing the common purpose. In brief, the
project’s aims are to:

• develop an ensemble climate prediction system on seasonal
to centennial time-scales

• quantify and reduce the uncertainty in modelling climate
• link the outputs of the ensemble prediction system to a

range of applications.

The summary ends with a description of the key features of the
E1 mitigation scenario presented in a case study. Brackets at the
end of the paragraphs refer to the sections of this report in
which more detail can be found.

2.2 The ensemble prediction system

2.2.1 Introduction

The ENSEMBLES project fulfilled its first aim of ‘developing
an ensemble prediction system for climate change’, and in ad-
dition investigated other complementary modelling techniques
for producing more reliable climate projections. Significant ad-
vances were made in model performance, and this is seen
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The climate projections generated in ENSEMBLES describe the world and Europe experiencing tangible,
measurable climate change. As the century progresses the projected climate moves increasingly farther
away from its current state, so that by 2100 the climate of Europe will be very different from today. Even
under a mitigation scenario, the climate of Europe during the next few decades is still calculated to depart
significantly from that of the present.

ENSEMBLES results show how the impacts resulting from these climate changes, including changes in
climate mean, variability and extremes, affect all the systems and sectors studied. Adverse impacts increase
in magnitude through time often exceeding critical system thresholds. Examples include impacts on health,
water resources, agriculture, energy supply and demand, and fire and pest risks to forests.

Many of these new results reinforce the conclusions of earlier studies of climate change projections and
impacts. What is new about the ENSEMBLES results is that they describe in far greater detail how the
climate is expected to change under standard scenarios of future emissions. They also include, for the first
time, multi-model climate projections for a greenhouse gas mitigation scenario leading to emissions and
temperature stabilisation in line with European policy aims. The results have been used as a basis for a set
of new tools and datasets for informing potential users about present and future climate, and have been
linked to new techniques for assessing the impacts of climate change in Europe in terms of risk.

This ‘added value’ in the ENSEMBLES results comes from using improved models, developing new and
better techniques to analyse and disseminate projections of climate change and their uncertainties, and
demonstrating how this information can be applied in policy-relevant impact assessments. The
improvements for example, add skill to seasonal forecasting while multi-decadal models, for the first time,
have produced probabilistic climate change projections for Europe.



especially at the seasonal to decadal timescale with verification
against observations and analyses. To couple the climate pro-
jections to impact models – the third aim of the project – a
cascading system of links was constructed, see Figure 2.1.
These links went from global climate models (GCM), to regional
climate models (RCM) and statistical downscaling methods
and then to climate change impact models. The exploratory na-
ture of the work meant that techniques were often tried in
parallel, for example GCM data were often statistically down-
scaled directly, and climate change impact models used
probabilistic, regional climate or statistically downscaled data as
their input. Significant steps towards constructing an end-to-
end system were made and future research directions to fulfil this
long-term aim were identified. [Section 3]

2.2.2 The GCM component of the ensemble
prediction system

Seasonal to decadal timescales

Ensemble climate forecasts on seasonal to decadal time-scales
can be verified against observations or analyses, making them
a powerful tool for quantifying and reducing modelling uncer-
tainty. Three different approaches to address model uncertainty
in coupled ocean-atmosphere circulation models were developed
and assessed: The multi-model ensemble builds on the experi-
ence of previous projects where it has been shown to be a
successful method to improve the skill of seasonal forecasts from
individual models. The perturbed parameter approach reflects
uncertainty in physical model parameters, while the newly de-
veloped stochastic physics methodology represents uncertainty
due to inherent errors in model parameterisations and to the un-
avoidably finite resolution of the models. [Section 3]

Results from a large set of seasonal hindcasts show that signifi-
cant progress has been made in reducing systematic model errors
compared with previous generations of models.A detailed com-
parison of the probabilistic forecast performance of the different
approaches to model uncertainty has been carried out. The multi-
model ensemble has a high standard of forecast skill, see Figure
2.2a. It was found that the two new schemes to represent model
uncertainty also provide forecasts competitive with the multi-
model approach, for climate forecasts on seasonal time-scales.
The relative performance for the three methodologies for fore-
casting temperature and precipitation over a set of standard land
regions around the globe up to seven months ahead is sum-
marised in Figures 2.2b and c. The complementary benefits of
the different approaches provide future potential to address
model uncertainty more comprehensively in climate predictions
across seasonal to decadal and longer time-scales. [Section 3]

The potential of decadal ensemble forecasting using fully ini-
tialised coupled GCMs was explored. ENSEMBLES provided
a first and pioneering opportunity to assess the benefits of com-
bining projections from different models in a coordinated
experiment, following initial studies carried out with individual
climate models. The existence of simulation biases in the mod-
els used for the decadal hindcasts necessitates the use of
strategies to account for these systematic errors when compar-
ing forecasts against observations. These results illustrate that
initialised decadal forecasts have the potential to provide im-

proved information compared with traditional climate change
projections, but the optimal strategy for building improved
decadal prediction systems in the presence of model biases re-
mains an open question for future work. [Sections 3 and 4]

Multi-decadal to centennial timescales

The ENSEMBLES project built ensemble prediction systems
based on global climate models to generate projections of future
climate on seasonal, decadal and multi-decadal time-scales. The
scope included the assembly and testing of new global climate
models, development and implementation of methods to repre-
sent the effects of uncertainties in the modelling of key physical,
biological and chemical processes (‘modelling uncertainties’),
and the use of observations to initialise and constrain the pro-
jections. There was also an improvement in the quantification of
uncertainties arising from model imperfections, as well as from
internal climate variability. [Sections 3,4,7 and 8]

Seven European climate modelling centres ran GCMs under his-
toric and four different scenario forcings (B1,A1B,A2, 1%CO2).
All centres ran several realisations to create multi-simulation en-
sembles of most scenarios, which together contributed to the
multi-model ensemble developed in the project. The GCM out-
put was then used for boundary conditions to drive Regional
Climate Models for a European domain. [Sections 3,4,5 and 6]

In addition, probability distributions (PDFs) of future temperature
and precipitation changes for regions of Europe were produced.
These were derived from a large ensemble of GCM projections de-
signed to sample uncertainties in key Earth system processes
through a perturbed parameter approach, combined with results
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Figure 2.1: Linkages between the modelling components of the
ensemble prediction system (EPS), as developed for use at multi-
decadal to centennial timescales, and the methods of impact
assessment using outputs from the system.



from alternative climate models and a multivariate set of obser-
vational constraints measuring the relative performance of
alternative model variants in simulating a variety of aspects of pres-
ent day climate and historical climate change. This comprehensive
approach supports the specification of a spread of plausible out-
comes for future change consistent with current climate modelling
technology and understanding of the driving feedback processes,
and expressed through PDFs of multidecadal mean changes in sur-
face temperature and precipitation (Figure 2.3). The PDFs have also
been sampled to produce a large set of individual estimates of sea-
sonal or annual mean temperature and precipitation changes for
individual GCM grid boxes across Europe, and also for a set of ag-
gregated regions. The left column in Figure 2.3 shows the 10, 50
and 90% percentiles for projected summer temperature change in
Europe for the 20 year period 2080-2099 relative to 1961-1990,
where the median case shows up to 7°C warming in Southern Eu-
rope and 5°C in Northern Europe. [Section 3]

2.2.3 The RCM component of the ensemble
prediction system

Fifteen institutes ran their RCMs at 25km spatial resolution,
with boundary conditions from five different GCMs, all using the
A1B emissions scenario, creating a GCM/RCM matrix filled with
25 runs. It was never planned to fill the matrix entirely with the
full combination of possible GCM/RCM runs, however ways of
inflating it artificially through pattern scaling could be investi-
gated. The driving GCMs of the matrix were not weighted
although this possibility was explored. A weighting scheme for
the RCMs based on different performance criteria was con-

structed so that variations in model performance can be ac-
counted for when calculating best-estimate projections and
associated uncertainties from ensemble mean and spread diag-
nostics. This refines the interpretation of the model runs in an
ensemble result. The weighting system developed is pioneering
in nature and represents a first step in developing this type of
methodology. Uncertainty investigation meant that RCM per-
formance was measured by means of hindcast runs driven by
ERA-40 reanalysis data and compared against the new EN-
SEMBLES gridded climate observation data set. These analyses
also contributed to investigating RCM uncertainties, together with
an examination of the relation between the role of RCMs and the
GCM driving boundary conditions for the regional projection re-
sults. Projected changes in climate from the RCM simulations
can, for comparative purposes, also be displayed alongside the
GCM probabilistic output. The RCM projections provide plau-
sible scenarios of detailed regional change, consistent with
larger-scale changes lying within the wider uncertainty envelope
defined by the GCM projections, as demonstrated in Section
2.3.3. [Sections 5,6,7 and 8]

2.2.4 Adding conditional probabilistic information to
ensemble regional output

Regional output was provided from both GCM and RCM en-
sembles, and from statistical downscaling mostly to point
locations. These different outputs were subject to further pro-
cessing including the construction of conditional probability
density functions (PDFs). A number of different methods of pro-
ducing conditional PDFs were developed. One of these is

2 Executive Summary
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Figure 2.2: (a) Probabilistic forecast skill score (relative operating characteristics, ROC) of the multi-model ensemble for DJF warm
temperature seasonal anomalies from re-forecasts started every year on the 1st of November over the period 1960-2005. (b) Scatter plot of
Brier Skill scores for the perturbed parameter and multi-model forecasting systems for the standard land-regions for temperature and
precipitation. See Figure 3.3 for more details. The inset numbers indicate the percentage of wins for each system. (c) As in (b), but for the
stochastic physics re-forecasts versus the multi-model ensemble. [Section 3]



modified Reliability Ensemble Averaging (REA), which was ap-
plied to GCM output for European regions, another method used
the ENSEMBLES RCM ensemble and weighting scheme. A
weighting scheme for use with statistical downscaling was also
developed. These techniques can produce either single or joint
conditional PDFs, the latter usually as changes in temperature
and precipitation - see Figure 2.4 for an example from a Euro-
pean city. The conditional PDFs produced are subjective in the
sense that they do not encompass the entire range of upstream
or downscaling uncertainties. [Section 6]

In general results indicate that statistical downscaling, generally
(but not always) brings additional skill. Other statistical down-

scaling work includes downscaling for seasonal indices of tem-
perature (see Figure 2.5 for an example from Northern Italy) and
precipitation extremes, and developing a conditional stochastic
weather generator to construct projections for daily precipitation,
including extremes. A web-based tool for statistical downscal-
ing was developed and is available at: http://grupos.uni
can.es/ai/meteo/ensembles/. [Section 6]

Climate change impact models took their inputs from any of
these stages in the EPS (i.e., from GCM, RCM and statistically
downscaled output – either in probabilistic formats or as time se-
ries data). A description of the climate impact models and their
input from the EPS is given in Section 9.2.
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Figure 2.3: ENSEMBLES probabilistic projections for Europe under the A1B emission scenario produced by the perturbed physics parameter ap-
proach. The maps show the 10%, 50% (median) and 90% percentiles of (left column) European surface temperature change and (right column)
European percentage precipitation change, for the summer season for the period 2080-2099 relative to the 1961-1990 baseline period. [Figure 3.11]



2.3 Quantifying and reducing uncertainty in
climate models

2.3.1 Introduction

The quantification and reduction of uncertainty was a major theme
throughout the project, and was represented in every Research
Theme. The following is a list of the major sources of uncertainty
which were identified so as to better quantify and reduce them:
(1) Uncertainties associated with different classes of model er-

ror, including structural modelling uncertainty (inherent in
basic model construction), uncertainty in model parameters
controlling the best-estimate outputs of parameterisations of
sub-grid-scale processes (for example cloud physics), and
stochastic uncertainties arising from coupling between un-
resolved sub-grid-scale variability and the resolved grid-scale
flow;

(2) Initial model state (for example, from ocean temperature);
(3) Dynamical downscaling between GCMs and RCMs (for ex-

ample; in the driving GCM boundary conditions, the choice
of GCM/RCM pair) and from RCMs and impact models;

(4) Statistical downscaling, typically from GCM to point-scale
(for example, choice of predictors, stationarity);

(5) Uncertainties associated with climate observations (the way
climate observations are constructed and applied) including
distribution pattern of atmospheric constituents (for exam-
ple the concentration distribution of ozone, or distribution of
aerosols);

(6) Translating greenhouse gas emissions to atmospheric con-
centrations;

(7) Translating atmospheric concentrations of greenhouse gases
to radiative forcing;

(8) The socio-economics upon which emissions scenarios are
based (for example technological development, land use, car-
bon taxation);

(9) Feedbacks from changes in the climate system on socio-eco-
nomic systems and then on anthropogenic emissions back
into the climate system.

In the rest of this section reference is made to the uncertainty
sources described above given as a number in brackets e.g.
(3) refers to the uncertainty arising from dynamical down-
scaling.
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Figure 2.4: Bivariate conditional PDFs for tempera-
ture and precipitation response (2021-2050 minus
1961-1990, A1B scenario) in Madrid for DJF (top
left), MAM (top right), JJA (bottom left), SON (bot-
tom right). Contours indicating densities are plotted
for 5, 20, 40, 60, 80 and 100 of 10-2°C-1mm-1day.
Calculated from scaled and weighted RCM data us-
ing the gaussian kernel method. [Figure 6.14]

Figure 2.5: Statistical downscaling applied to six GCM runs to construct con-
ditional PDFs of changes in temperature extremes over Northern Italy. Large
increases in maximum temperature extremes are indicated. [Section 6]



2.3.2 Quantifying and reducing uncertainty

The construction of the EPS was in itself the biggest step toward
reducing uncertainty in model projections as it allowed, up to a
point, the quantification and linking of the components of un-
certainty within the EPS production chain. However, along
with the new areas of research it also had to describe new areas
of uncertainty, for example, matrix downscaling from GCMs to
RCMs and weighting the output was the first time that such an
uncertainty space has been constructed, sampled and described.
[Sections 3,4,5 and 6]

Global Climate Models

Describing the uncertainty space intrinsic to within GCMs,
given in point 1 in the list above, at seasonal to decadal time-
scales was addressed by the three complementary modelling
approaches: multi-model ensemble; perturbed physics, and sto-
chastic physics. The multi-model approach samples structural
variations among a range of models by combining climate mod-
els that have been developed quasi-independently in an ad hoc
way without systematically exploring individual sources of un-
certainty. The perturbed parameter approach aims at sampling
uncertainties in the relationship between grid-box model vari-
ables and the effects of parameterised sub-grid-scale processes
in a single model, when these are represented by deterministic
bulk formulae (as is currently typical in climate models). The
stochastic physics approach addresses an additional aspect of pa-
rameterisation uncertainty (also in a single model), associated
with uncertainties arising from how alternative (but unresolved)
organisations of sub-grid-scale variability within a model grid
box might couple with and influence the resolved scales of the
model. The last two methods can be seen as complementary
ways to account for model error and begin to outperform the
more traditional approach of the multi-model. For example, the
probabilistic skill of predicting anomalous rainfall over Europe
2-4 months in advance was found to be improved by each of
these two new schemes over the multi-model ensemble. [Sec-
tion 3]

At the centennial time-scale the multi-model ensemble and
perturbed parameter approaches were used. The former pro-
vides input for the dynamic downscaling, while the latter (in
combination with multi-model projections and observational
constraints) produced probabilistic projections based on a more
comprehensive approach to the specification of the spread of
plausible future changes than previously attempted. The prob-
abilistic projections (see Figure 2.3) can show a range of up to
10°C for the 10 to 90 percentiles and this comes from many dif-
ferent sources of uncertainty, with no one source being
dominant. The multi-model ensemble results confirm the large
spread in the projected changes of the water cycle, the climate
variability and the extreme events. It has been shown that at-
mospheric processes such as cloud physics, convection or
coupling with the surface are at the heart of these major un-
certainties. Strategies have been developed and proposed to
improve and better assess the models. (1) In discussing un-
certainty it is also useful to look at model agreement and in
projections of regional precipitation change with patterns of
summer Mediterranean drying and winter Northern European
wetting the agreement between models indicates a robust result,
with little uncertainty. [Sections 3,4 and 7]

The uncertainty associated with the carbon cycle feedbacks
was investigated with dynamic global vegetation models that in-
clude land use, plant processes, vegetation types, fire and runoff
(1). In general, the response including carbon cycle feedbacks
was found to be as large as that associated with climate change,
even when a perturbed physics model was used to scope the
range of uncertainty of changes in the climate component of the
model. [Section 9]

Initialisation strategies for seasonal to decadal forecasts were in-
vestigated and improved, through developments of ocean data
assimilation systems by participating modelling groups, the
production and use of an updated dataset of observed tempera-
ture and salinity values to produce ocean re-analyses for the
initialisation and verification of hindcasts, and the implementa-
tion of approaches to account for uncertainties in the initial
conditions, especially those associated with sea surface temper-
atures and surface exchanges (2). Improvements in characterising
the factors governing non-linear feedbacks and extreme events
in climate models have helped reduce uncertainty in seasonal to
decadal predictions (1). This included results from an experiment
with six atmospheric GCMs forced by a common sea surface
temperature which examined model uncertainty instead of sce-
nario or initial condition uncertainty. A better understanding of
the global hydrological cycle has been developed, especially
about its origins in the tropics and its relation to large interannual
fluctuations in tropical precipitation. [Sections 3 and 7]

The global projections out to 2100 all used a common forcing
from the A1B scenario (6,7,8), with its underlying socio-eco-
nomics and emissions distributions. The global simulations
were run over a historic time period (1860-2000) again, with
all using an identical forcing for this historic period. This al-
lowed the definition of a statistical distribution of the climate
response and an assessment of the probability of climate
change including the uncertainty as models were weighted to
climate observations (5). The use of a common set of forcings
in the project meant that the uncertainty associated with emis-
sions and concentrations was not introduced (7). Work was also
done on the impacts of climate change affecting socio-eco-
nomic behaviour, which would then affect emissions. This
magnitude of this feedback was calculated to be smaller than
the climate change signal (9). [Sections 4 and 10]

Regional Climate Models and downscaling

The process of dynamical downscaling was investigated using
RCMs nested in GCMs. For this experiment a number of par-
ticipating GCMs and RCMs were set up in a matrix (Table 5.1),
although it was never planned to run all possible combinations.
Twenty-five RCM runs were subsequently made. The RCMs
were run on 25 km resolution, a scale that was largely untested
at the start of the project. Prior knowledge about model per-
formance and bias was unknown, thus running them first at
50km resolution, as in earlier projects, and then across a spread
of several GCMs helped identify these sources of uncertainty
(1). A driving GCM run with different climate sensitivities was
also used and these showed very different climate responses
with the same RCM. Uncertainty related to simulated natural
variability (2) was of importance in the first part of the century
but for the end part other sources become more important.
[Sections 5 and 6]
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A common forcing from the A1B scenario was used for the
RCM modelling. Uncertainty in future emissions was not ex-
plicitly studied, in part because the basic length of the regional
projections was to extend only to 2050, a time horizon for
which the emission scenario uncertainty is less relevant (7,8).
[Sections 5 and 6]

Aweighting methodology for RCMs was developed as no single
model is best at representing all climate processes and variables.
Performance-based model weights applied to a combination of
simulations from different models should have enhanced
projection skill (1,3). The weighting methodology is relevant to
both robustness and uncertainty in model performance, but
cannot be used to find the best – or worst – overall model.
Impacts assessment using RCM output should ideally use at least
two or more RCMs forced by two or more GCMs and consider
their output in the context of the full matrix output to ensure that
they do not under sample uncertainty (3). [Section 5]

A weighting scheme was also developed for use with statisti-
cal downscaling and the uncertainties inherent to this approach
were explored (4). For example, the assumption of predictor-
predictand stationarity was investigated using RCM output as
pseudo-observations. [Section 6]

An evaluation of robustness in the regional RCM projections
shows the mid-century signal for the multi-model mean tem-
perature is one of warming in all of Europe and is much larger
than the inter-model standard deviation. For precipitation the
signal shows agreement in direction, projecting an increase in
precipitation in the north and a decrease in the south, with all
models agreeing in the north and twelve out of sixteen mod-
els agreeing in the south. [Section 6]

Next was an examination of the sources of uncertainty within the
GCM/RCM pairing experiment, of which three were identified:
choice of GCM, choice of RCM, and interannual variability. All
available simulations within the GCM-RCM matrix were ex-
amined, and the results showed regional and seasonal variation
over whether the GCMs or the RCMs had the dominant influ-
ence. The choice of GCM/RCM pair showed that large-scale
seasonal mean changes were dependent on the GCM, while
many of the differences between RCMs could be explained
more by simulated natural variability, for the first half of the cen-
tury. Beyond that it was found that with a higher climate change
signal, the more important the GCM spread and the lower the sig-
nal, the more important the RCM. However, it is clear from this
and other work that uncertainties in both global and regional
processes contribute significantly to the total spread of plausible
responses at both decadal and centennial lead times. Therefore
comprehensive sampling of both is needed in order to provide a
set of projections suitable to inform risk assessments for adap-
tation (1,3). The extent and design of the ENSEMBLES
GCM/RCM matrix gives users the opportunity to test the effects
of different sampling strategies, with future testing of unfilled
pairs being a goal for future work. [Sections 5 and 6]

Downstream use of projections

The next step in representing the sources of uncertainty, was to
construct probabilistic projections for downstream users, based
on both dynamical and statistical downscaling approaches. Many

statistical downscaling methods were used, including regres-
sion, neural networks, canonical correlation analysis and
analogue methods. Conditional PDFs, which encompass the
sampled uncertainty, were constructed from the statistically and
dynamically downscaled output (and from GCM output) for
temperature and/or precipitation for a number of areas and points.
These are, however, qualitative constructions (3,4). Alternative
approaches were used for constructing PDFs including the gauss-
ian kernel method and REA. [Section 6]

Modellers of climate change impacts were provided with this
suite of probabilistic climate information to use as a starting
point for their work. (Work was also done using large ensem-
bles of time-series data.) They applied the climate data for their
area of impact research, including the uncertainty information
cascaded down to them, ranging from risk surfaces or PDFs to
more subjective outputs (3,4). To this could be added the un-
certainty inherent in their projections, and to try to address this
a technique for ensemble modelling of crop yields at seasonal
timescales was developed. [Section 9]

Evaluation of climate models against observations

The ENSEMBLES gridded observations data set was used
along with other datasets to verify and calibrate both global and
regional models, and also to assess the uncertainties in model
response to anthropogenic forcing. The gridded dataset was
constructed so that descriptions of current climate (e.g., ex-
tremes) could be compared with model output. The gridded
observations were constructed on the same grid as the RCMs
so that interpolation was not needed. (5) [Section 8]

The E1 scenario

E1 is a mitigation scenario in which atmospheric concentra-
tions of greenhouse gases are stabilised at 450ppm
CO2-equivalent. It was developed using a reverse-engineered
approach with a starting point of atmospheric concentra-
tions/forcings, instead of the usual emissions. This meant that
the forward calculation from emissions to concentrations was
avoided and therefore too the uncertainty arising from it (6,7).
This technique is being developed for the IPCC Fifth Assess-
ment Report (AR5) as the Representative Concentration
Pathways. The scenario was run on the latest European GCMs,
some including carbon cycle feedbacks (1), which again helps
quantify the uncertainty in the global climate projections. An
overview of the E1 mitigation scenario is given in Section 2.6.
[Sections 4 and 7]

2.3.3 ENSEMBLES model projections in the context
of wider uncertainties

As a final approach for locating the model simulation results
from ENSEMBLES in the context of wider uncertainties,
Figure 2.6 has been constructed to compare projections of
mean annual temperature and precipitation change over
northern Europe (48N-75N 10W-40E) and the Mediterranean
Basin (30N-48N 10W-40E) for the mid-term (2030-2050)
and long-term (2080-2100) future. Using these plots, it is
possible to compare the GCM-based (Section 2.2.2) and
RCM-based (Section 2.2.3) projections generated specifically
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in ENSEMBLES for the A1B (medium, non-mitigation)
emissions scenario with probabilistic projections based on
multiple sources of information for the same emissions
scenario (cf. Figure 2.3). In addition, Figure 2.6 also depicts
the ENSEMBLES GCM-based projections of climate change
under the E1 mitigation scenario (cf. Section 2.6).
Comparison of the green (E1) with the blue (A1B) symbols
indicates clearly how the effects of mitigation become
apparent only towards the end of the 21st century. The
depiction of uncertainty in future projections using bivariate
PDFs such as those shown as coloured zones in Figure 2.6
has been carried forward in the next section into impact
assessments, where probabilities of future climate outcomes
have been translated into estimates of impact risk. [Sections
3,4,5,6 and 9]

2.4 Exploiting the results of the ensemble
prediction system

The ensemble climate projections and the probabilistic pro-
jections were used to assess climate change impacts across a
number of systems and sectors. These assessments were for
Europe apart from one study on seasonal malaria forecasts in
West Africa. Around twenty large studies into projected im-
pacts were conducted in the insurance, energy, health, water,
agriculture, and natural environment sectors, plus many smaller
ones. These studies cover a range of time-scales (from seasonal
to centennial), different countries and European regions and di-
verse aspects within each sector. For example the agricultural
impacts work includes potato, wheat and kiwi fruit yields, ni-
trogen leaching and Bluetongue disease. The work also covers
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Figure 2.6: Annual changes in temperature (T) and precipitation (P) in northern Europe (NEU, top panels) and the Mediterranean Basin (MED, bot-
tom panels) by the periods 2030-2050 (left) and 2080-2100 (right) relative to 1961-1990. Coloured areas depict probabilistic projection
percentiles based on a statistical emulation of various sources of uncertainty from models and observations for the A1B scenario. Dark blue sym-
bols are projections from RCM (closed) and their driving GCM (open) simulations for the A1B scenario (atmospheric concentration of ~700ppm
CO2 only in 2100); light blue symbols are other GCM simulations for A1B; green symbols are GCM simulations for the E1 mitigation scenario (sta-
bilisation at 450ppm CO2-equivalent after 2100).



projections to changes in mean climate, climate variability and
climate extremes. [Section 9]

Ten examples are given in Section 9 of this report illustrating the
type of work done in the project. Now that probabilistic pro-
jections are available to climate change impacts modellers new
techniques are being employed to exploit them, such as the im-
pact response surface. This is where changes in climate variables
(e.g., temperature and precipitation) are given and system thresh-
olds (e.g., in river flow, or crop yield) plotted on the climate
variables to make a response surface. The probabilistic climate
projection is then superimposed and it can be seen whether, and
by how much, an impact threshold is exceeded. See Figure 2.7
for an illustrative example of this method for operational water
levels in Lake Mälaren in Sweden projected for 2031-2050.
[Section 9]

Time-series climate projections direct from the weighted output
of the RCM ensemble were also used directly in impact mod-
els, which in addition to providing information about mean
future climate also provides characterisations of future extremes
and variability. [Section 9]

Ensemble model projections at seasonal timescales were linked
to application models through seasonal hindcasts to develop
forecast models for seasonal events such as crop yield and elec-
tricity demand. A seasonal application model was linked to
downscaled RCM projections to include climate dynamics
which was shown to add skill. This was malaria modelling in
West Africa using the Liverpool malaria Model. [Section 9]

The impact assessment work shows that climate change affects
all the systems and sectors studied. The impacts were noticeable
in the near future (2020s to 2050s) becoming more severe by the

end of the century. In many sectors, especially in the last thirty
years of the century, critical impact thresholds are exceeded im-
plying that damages will be incurred by climate change.
[Section 9]

The ENSEMBLES datasets are just beginning to be exploited
by the wider climate impacts community and there is still a great
scope for their further exploitation of them in climate impacts
research. All datasets are publicly available for the international
research community to explore their wider scientific potential.
The statistical downscaling web portal will also continue to pro-
vide additional new datasets for researchers derived from
existing regional projections.

2.5 Extreme weather events in climate
projections

The impacts from extreme weather events (heavy rainfall,
drought, severe cold, heatwaves and storms) under current cli-
mate are damaging and costly in both economic and human
terms. Extreme events are, by definition rare, but because of
their high impact any changes in frequency and/or intensity un-
der future projected climate are of interest. Knowledge of future
changes in extreme events is also needed for constructing adap-
tation strategies.

Model simulations of extremes in RCMs have been compared
with the ENSEMBLES gridded observations dataset using de-
scriptive indices of extremes as well as Generalized Extreme
Value distribution for estimating return levels of extreme events.
Many observed characteristics of extremes are well simulated by
the models, although differences in model performance exist. In
addition to model biases, the consistency of projected changes
in extremes has been evaluated. For the precipitation extremes
in the Rhine basin, some interesting common tendencies have
been identified. For the summer season, there is hardly any
change in the daily amounts for short return periods (every 2
years), but there is a considerable increase in the daily amounts
for longer return periods (every 50 years). For the winter season,
the reverse occurs with larger changes in the 5-day amounts for
short return periods and almost no change in the 5-day amounts
for the longer return periods, despite the clear increase in mean
winter precipitation in most RCM simulations. [Section 8]

Three RCMs were evaluated in the Mediterranean region against
the gridded observations, then extreme climate indices were cal-
culated and their trends analysed over the period of 1961-2050.All
models show extremes of high temperatures increasing in the fu-
ture and an increase in summer low temperatures. For the
precipitation indices, the models present similar current and future
spatial patterns of the extreme precipitation amounts in winter, with
the most extreme precipitation observed along the western borders
of all peninsulas of the northern Mediterranean. [Section 7]

Projections in extreme events from transient climate simulations
were configured for studies at regional and smaller scales. Case
studies, some of which involved statistical downscaling, in-
clude extreme precipitation events in Romania and Spain,
drought in Germany, river flow extremes in the Rhine and
Danube, and temperature extremes over the Mediterranean.
[Section 6]
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Figure 2.7: Impact response surface for Lake Mälaren in Sweden. Di-
agonal black lines are the likelihood in percent of summer water level
below the target operating threshold for a consecutive period of 50
days for the change in summer temperature/precipitation. Climate
projections are depicted as probability density plots for the period
2031-2050 based on probabilistic projections from the perturbed
physics ensemble. The coloured area encloses approximately 90% of
all projected outcomes. Also shown are projections from five RCM
simulations (coloured dots). The impact response surface was created
from some 300 simulations using the HBV (Hydrologiska Byråns Vat-
tenbalansavdelning ) hydrological model. [Figure 9.20 part]



The effects of projected changes in extreme events in different
systems were investigated: property damage due to windstorms in
western and central Europe, effects of temperature changes on
energy demand in the Mediterranean, forest fire risk in Fenno-
scandia, forest damage due to low temperature and pests in Sweden
and effects on crop yields, water resources and health in Poland.All
show significant, mostly negative, impacts. [Section 9]

2.6 Case study: The E1 mitigation scenario

The E1 mitigation scenario, developed in ENSEMBLES, is the
first mitigation scenario run using an ensemble of GCMs. It sta-
bilises atmospheric CO2 at 450 ppm equivalent by 2140, while
emissions peak at about 12 gigatonnes of carbon in 2010. The E1
scenario was constructed using the IPCC AR5 methodology of
starting at concentrations/forcings and running forward calcula-
tions for climate projections, and reverse calculations for emissions
and socio-economics. The scenario is based on the IPCCA1B sce-
nario and uses the PBL Integrated Assessment Model (IAM) to
simulate energy, land use and carbon cycle. TheA1B scenario was
also run through IAM and the GCMs to use for comparison. Ten
European GCMs were run using E1, five of which include carbon
cycle feedbacks. Results show that the global mean temperature
rise for most models, relative to pre-industrial, stays below 2°C
(Figure 2.8). The spatial pattern for the global mean temperature
anomaly (Figure 2.9) shows regional variations, while bi-variate
projections for temperature and precipitation for Northern and
Mediterranean European regions at mid and end century from a
number of GCMs are shown in Figure 2.4. [Sections 4 and 10]

The five GCMs which model carbon cycles feedbacks were used
to back-calculate anthropogenic CO2 emissions from land/
ocean/atmosphere carbon fluxes. They show that implied emis-
sions of CO2 to the atmosphere at the end of the century fall close
to zero, or in the case of one model (HadCM3C) below zero, im-
plying carbon sequestration exceeding emissions (Figure 2.10).
[Sections 4 and 10]

Further work on the E1 scenario could include an end to end
analysis, including risks, on possible future impacts. It would
also be informative to examine the pathway leading to future po-
tential impacts to have a better picture of their onset, incidence
and magnitude. Lastly, knowing the damages avoided by sta-
bilising greenhouse gases at E1 scenario levels would be
informative for policy makers. It could also provide information
about levels of adaptation to avoid impacts under mitigation.

2.7 Conclusions

The ENSEMBLES project was built upon foundations laid by
many earlier EC funded projects (DEMETER, PRUDENCE,
STARDEX, MICE). The new techniques pioneered in EN-
SEMBLES include a coordinated approach to seasonal to
decadal prediction, probabilistic climate change projections,
development and assessment of alternative approaches to the
sampling of modelling uncertainties, use of a GCM/RCM ma-
trix to provide an ensemble of plausible realisations of detailed
regional climate change, improved estimates of regional cli-
mate impacts and their uncertainties though a systematic and
integrated approach to climate and impacts modelling. These
innovations have opened up new areas of research that have the
potential to provide insight to many of today’s unanswered
questions about future climate change.

Through these developments, ENSEMBLES represents a
significant step towards a seamless climate prediction system
that addresses climate changes and their impacts at the fullest
possible range of temporal and spatial scales. The seamless
paradigm has allowed the transfer of knowledge and inno-
vative methodologies across different components of the
ENSEMBLES prediction system. The legacy of ENSEM-
BLES will in part reflect the extent to which its key
contribution to the current state of the art is translated into fu-
ture progress in the understanding and prediction of climate
variability and change.
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Figure 2.8: Global average temperature projected by a range of models for E1 in the 21st century. [Figure 4.6]
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Figure 2.9: Annual mean temperature anomaly 2070-99 in E1 relative to 1961-90 as an average of 10 GCMs. [Section 4, Figure Appendix 1 A1.6
part]

Figure 2.10: Implied (“permitted”) anthropogenic net carbon dioxide emissions to the atmosphere (Gt C/yr) in A1B and E1 20th and 21st century
from modeled net carbon flux exchanges for the atmosphere. [Figure 4.8 part]





19

3.1 Introduction

The purpose of RT1 was to build ensemble prediction systems
based on global climate or Earth system models for use in
generating projections of future climate on seasonal, decadal
and multi-decadal time-scales. The scope included the
assembly and testing of new Earth system models,
development and implementation of methods to represent the
effects of uncertainties in the modelling of key physical,
biological and chemical processes (hereafter termed
‘modelling uncertainties’), and the use of observations to
initialise and constrain the projections.

Recognising the emergence of pioneering work in decadal
prediction at the start of the project, and building on a proven
multi-model approach to seasonal prediction deployed in a
previous EU project (DEMETER; see Palmer et al., 2004), RT1
included a substantial effort to develop a coordinated system
for seasonal to decadal (s2d) prediction, assessed via a
comprehensive set of retrospective forecasts for past cases
(‘hindcasts’) started from dates covering the period 1960–2005.
In addition to an updated multi-model ensemble, two new
approaches to the characterisation of modelling uncertainties
were considered, both based on systematic perturbation
strategies applied to a single model. One involved adding
stochastic elements (Berner et al., 2008) to model
parameterisations of sub-grid-scale physical processes (which
are otherwise assumed to be deterministic in climate models);
the other involved sampling uncertainties in poorly constrained
parameters which control the deterministic outputs themselves.
These systems were used to produce a large set of hindcasts,
carried out as a coherent joint programme between RT1 and
RT2A – the results from both RTs being presented together in
Section 3.2. The decadal projections provide a forerunner to the
worldwide near-term climate projection experiment planned for
the next IPCC assessment (see Meehl et al., 2009), and results
from the seasonal and decadal hindcasts are available for use
by the climate research and impact communities via a public
database developed in RT2A (see Section 4.5 andAppendix 2).

The perturbed parameter approach (often referred to as
‘perturbed physics’ in the climate change literature) also
formed the central element of work on decadal–centennial
climate prediction in RT1, encompassing several projects
building on earlier studies (e.g., Murphy et al., 2004;
Stainforth et al., 2005; Collins et al., 2006), and described in
Section 3.3. This focus arose from the recognition that while
multi-model ensembles are a valuable tool for the projection
of long-term climate change (Meehl et al., 2007), they are
typically assembled on an opportunity basis, and are not

designed to sample systematically the spread of possible
outcomes consistent with our current understanding of climate
feedback processes. Attempts to generate probabilistic
estimates of climate change from multi-model projections
require substantial assumptions, and different methods
therefore generate significantly different results (Tebaldi and
Knutti, 2007). RT1 therefore developed a new modelling
system specifically designed for probabilistic projections,
based on perturbed parameter ensembles of a family of
configurations of a single climate model (HadCM3), but also
including results from alternative models in order to take
account of uncertainties arising from basic structural choices
which cannot be varied within a single model. This system
was used to provide probabilities for multi-decadal changes
in European surface temperature and precipitation during the
21st century, based on a medium non-mitigation emissions
scenario (SRES A1B) and available at a spatial resolution of
about 300 × 300 km2. These results provide a much-improved
basis for the assessment of climate-related risks in adaptation
planning, and has been used extensively for assessments of
climate impacts by RT6. The envelope of possible outcomes
defined by these projections also supplies context for the more
detailed multi-model projections available from regional
climate models within ENSEMBLES, developed by RT3 and
produced by RT2B.

In addition, RT1 included a Work Package to assemble and
test a new generation of Earth system models. Results from
these are reported by RT2A, in which they were used to
provide updated multi-model projections of global change,
investigating, in particular, the carbon emissions required to
replicate greenhouse gas concentration pathways available
from the A1B scenario, and also from a new mitigation
scenario (E1) developed by RT7.

3.2 Seasonal to decadal prediction system

Here we summarise the work done on the seasonal–decadal
prediction system in ENSEMBLES, carried out jointly by RT1
and RT2A.

Climate predictions on seasonal time-scales are now made
routinely at a number of operational meteorological centres
around the world, in many cases using comprehensive coupled
dynamical models of the atmosphere, oceans and land surface.
The non-linear nature of the climate system makes dynamical
climate forecasts sensitive to uncertainty in both the initial
state and the model used for their formulation. Uncertainties
in the initial conditions are accounted for by generating an

3 Development of ensemble prediction systems
[Research Theme 1]
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ensemble from slightly different atmospheric and ocean
analyses. Uncertainty in model formulation arises due to the
inability of dynamical models of climate to simulate every
single aspect of the climate system with arbitrary detail.
Climate models have limited spatial and temporal resolution,
so that physical processes that are active at smaller scales (e.g.,
convection, orographic wave drag, cloud physics, mixing)
must be parameterised using semi-empirical relationships.

In ENSEMBLES, three approaches to address model
uncertainty in seasonal–decadal predictions have been explored.
1. The multi-model method empirically samples errors that

occur due to structural inadequacy in individual climate
models by using models with different formulations and
parameterisations (Palmer et al., 2004). This approach
relies on the fact that global climate models have been
developed somewhat independently at different climate
institutes, using different numerical schemes to represent
the dynamics, and applying different parameterisations of
physical processes.

2. Given that some of the most important model uncertainties
are in the specification of the parameters that are used in
the physical parameterisations (Murphy et al., 2004;
Stainforth et al., 2005), the perturbed parameter approach
(see also Section 3.3) samples model uncertainty by
creating ensembles of alternative variants of a single model
in which multiple uncertain parameters are perturbed.

3. Due to the finite spatial resolution of climate models, the
representation of processes on spatial scales smaller than
the truncation scales, and their feedback onto larger
scales, remains subject to considerable uncertainty. The
impact of unresolved scales can be approximated by
stochastic physics elements that act either as perturbations
to the physical tendencies or via energy backscatter
processes from the sub-grid scales to the resolved scales
(Palmer, 2001; Berner et al., 2008).

Two streams of coordinated seasonal–decadal experiments
were carried out during the project:
Stream 1 covered the 1991–2001 hindcast period for seasonal to
annual rangewith 7-month-long hindcasts started everyMay and
November. The November start dates were extended to
14 months in order to cover a full calendar year. Each of the
groups contributing to the multi-model ensemble ran nine-
member ensembles sampling uncertainties in the observed initial
conditions (see Section 3.2.1). In addition, further nine-member
ensembles were run to assess the stochastic physics and
perturbed parameter approaches to sampling modelling

uncertainties, using the IFS/HOPE and DePreSys systems,
respectively. Papers documenting the results have been written
(Berner et al., 2008; Doblas-Reyes et al., 2009). The perturbed
parameter hindcasts were also tested in decadal predictionmode
by extending the hindcasts for all 22 start dates. Partners
contributing to the multi-model ensemble also carried out test
decadal projections for two start dates (November 1965 and
November 1994), using the results to inform the design of the
subsequent stream 2 hindcasts.

Stream 2 hindcasts consisted of a comprehensive set of seasonal,
annual and decadal integrations. The seasonal (7-month long)
and annual (14-month long) hindcasts were performed over the
46-year hindcast period 1960–2005, with start dates every
4 months (February, May, August and November). This gave a
total of 184 seasonal hindcasts. Ten multi-model decadal
hindcasts were carried out over the same hindcast period, starting
every 5 years (1960, 1965, 1970, …, 2005) in November. The
2005 start date also provides a future prediction for 2010–2014
(see Section 3.2.3). The seasonal–annual hindcasts again
consisted of nine ensemble members per model, whereas the
decadal runs were done with three members per model. Table
3.1 summarises the contribution from each partner to the s2d
stream 2 hindcasts.

The DePreSys system was used to create a large set of decadal
hindcasts, initialised every November during 1960–2005. The
ensemble hindcasts consisted of theHadCM3model variant with
standard parameter settings plus eight variants distinguished by
multiple parameter perturbations. These formed a subset of the
model variants used in the multi-decadal climate change
projections of Section 3.3, andwere chosen to span a wide range
of model behaviour in terms of climate sensitivity and ENSO
amplitude.

A revised version of the stochastic physics approach (Palmer et
al., 2008) has been used in test mode for a subset of stream 2
seasonal hindcasts. The revised scheme includes the latest
developments for the stochastically perturbed parameterisation
tendencies (SPPT) and the spectral stochastic backscatter (SPBS)
schemes. SPPT is based on univariate perturbations of the wind,
temperature and humidity tendencies, using a spectral pattern
generator with a synoptic and a seasonal time-scale. SPBS uses
stochastic backscatter to perturb the streamfunction forcing
based on dissipation rates calculated from numerical, convective
and orographically induced dissipation. Preliminary hindcasts
for the May and November start dates over the 1991–2008
period have been completed at the time of writing.
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Table 3.1: Overview of coupled models used in the stream 2 seasonal–decadal hindcasts.
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3.2.1 Initialisation strategies

Building on work done in the previous European projects,
DEMETER and ENACT, a substantial effort on the ocean
initialisation for seasonal–decadal climate prediction was
carried out. The work can be summarised as follows.
1. Improvement of existing assimilation systems,

particularly those developed previously in ENACT, in
order to facilitate production of multi-decadal reanalyses
(see ENSEMBLES report D1.3: http://ensembles-
eu.metoffice.com/project_reporting/year2reporting/public
_completed_milestones_deliverables_13_24/D1.3_NewD
Asystems.pdf). Several partners then pursued further
developments of their data assimilation systems in order
to prepare the ENSEMBLES stream 2 experiments. This
involved, for example, better calibration of the systems,
introduction of new datasets, and better covariance
models for the representation of the remote effects of
available observations.

2. Improvement of the common EN3 database of observed
temperature and salinity profiles: recent data were
included, historical records were updated with data from
the recent World Ocean Database, and the quality control
was improved (Ingleby and Huddleston, 2007).

3. Definition of an approach to deal with uncertainties in esti-
mates of the observed state of the ocean: the approach
chosen by most of the groups was to produce sets of
surface forcing perturbations and apply them to ocean
models and assimilation systems in order to generate
ensembles of ocean reanalyses and/or initial conditions. In
particular, a set of perturbations for sea surface tempera-
ture (SST), wind stress, and freshwater flux were produced
and made available by ECMWF.Although usage of these
perturbations differs somewhat from one system to
another, they constitute a coordinated method for dealing
with ocean uncertainty.

4. Final production of ensembles of multi-decadal ocean
reanalyses, for both ocean state estimation and coupled
seasonal–decadal hindcast initialisation.

A project report (ENSEMBLES report D2A.1: http://ensem-
bles-eu.metoffice.com/project_reporting/year2reporting/
public_completed_milestones_deliverables_ 13_24/D2A.1_
OceanAnalyses.pdf, also appearing asWeisheimer et al., 2007)
summarises the choices made.

All these developments fed directly into the production of
seasonal–decadal stream 2 hindcasts by providing ocean initial
conditions.Additionally, some products have been made avail-
able to the project, as well as to the public, to stimulate research
studies within the community. These are:
• The Met Office quality-controlled oceanographic database
EN3, which includes temperature and salinity profile data.
Documentation appears in Ingleby and Huddleston (2007).

• A database of ensembles of ocean reanalyses available
from the ENSEMBLES seasonal–decadal public data
server at http://ensembles.ecmwf.int/download/ocean/. The
database contains a set of ocean variables, using the
common NetCDF data format, interpolated on a common
grid. Data are available from five groups: namely ECMWF,
INGV, Met Office, IfM Kiel and CERFACS, amounting to
about 23 realisations for the period 1960–2005.

Figure 3.1 presents an illustration of the reanalyses database.
It shows the multi-decadal evolution of the upper ocean heat
content (or, equivalently, the averaged temperature) for
ensembles of ocean reanalyses from ECMWF, INGV, the Met
Office and CERFACS. The results show substantial decadal
variability in the reanalyses, whereas some recent observation-
only estimates (e.g., Domingues et al., 2008) show a much
less pronounced decadal variability, especially during 1975–
1985. This is because the database of Ingleby and Huddleston
(2007) contains some historical data, mostly from expendable
bathythermographs (XBTs), that have been diagnosed as being
affected by a wrong correction (see Wijffels et al., 2008). In
addition, there are differences in the heat content tendency
from different reanalyses, probably due to differences in the
strategies for restoration towards climatology. Furthermore,
there appears to be a clustering of the ensembles of reanalyses
issued from the same system, implying that the application of
our perturbation strategy to any single reanalysis systemmight
not be sufficient to sample fully the true uncertainty in the
observed ocean state, in the decadal prediction context. In this
regard, the ‘multi-analysis spread’ may provide a more
realistic estimate of the uncertainty.

3.2.2 Results of the seasonal to annual hindcasts

The forecast quality of the different approaches to model
uncertainty on the seasonal–annual time-scale has been
carefully analysed and assessed in terms of different aspects of
deterministic and probabilistic forecast performance.

For tropical Pacific SSTs, the multi-model ensemble was
shown to outperform any of the perturbed initial condition
ensembles from the participating individual models,
demonstrated by reduced RMS errors and enhanced ensemble
dispersion at all lead times (Weisheimer et al., 2009). A

Figure 3.1: Global (80°S–80°N) annual mean upper (0–300 m) ocean
averaged temperature anomalies (with respect to the average for
1960–2005) in 20 ENSEMBLES ocean reanalyses.



considerable reduction in systematic error compared with a
previous multi-model ensemble from the DEMETER project
was also found. Probabilistic forecast skill scores indicated that
the new ENSEMBLES multi-model ensemble is, on average,
more skilful than DEMETER in the 4–6 month forecast range.
The degree of these improvements depends on the region, season
and event of interest. The combination of ENSEMBLES and
DEMETER into a grandmulti-model ensemble did not improve
the seasonal forecast skill further.

Table 3.2 shows a summary of probabilistic seasonal skill scores
of the ENSEMBLESmulti-model stream 2 hindcasts for 21 stan-
dard land regions around the globe. The events considered are
cold/warm seasonalmean temperature and dry/wet seasons, for 2–
4 months ahead. Positive (negative) scores are indicated as green
(red) cells and indicate more (less) skilful probabilistic hindcasts
than issuing a forecast solely based on a knowledge of climatology.
Strong bold colours denote statistically significant scores. In
general, the forecast skill is positive for most areas and events.
Surface air temperature is, on average, more predictable than
precipitation. The level of skill depends strongly on the region:
whereas some land areas such as the Amazon Basin (AMZ) and
South EastAsia (SEA) have positive scores for all events consid-
ered; other geographical areas are more difficult to predict (e.g.,
Central NorthAmerica, CNA, or Northern Europe, NEU).

For this wider set of regions, comparison with the DEMETER
results shows that the hindcast skill of the two multi-model
systems is generally comparable. However, it is also found that

a combination of the DEMETER and ENSEMBLES results
generally leads to improved skill compared with either system
alone. This is in contrast with the result found for tropical
Pacific SSTs (see above).

Preliminary simulations with the new stochastic physics scheme
showed that this approach is capable of reducing systematic
errors in the system and improving forecast scores over the
control model version (Palmer et al., 2008). The new scheme
increases the ensemble spread without adversely affecting the
magnitude of forecast errors, thus successfully reducing the
overconfidence in seasonal predictions. This is reflected in a
better match between the ensemble spread and the root mean
square error (RMSE) in the ensemble mean, and also in
improved reliability when hindcasts are expressed in proba-
bilistic form. Further tests of the scheme are under way.

An intercomparison was performed to highlight the relative
merits of the three systems in the stream 1 seasonal and annual
hindcasts (Doblas-Reyes et al., 2009). It was found that the three
methods to account for model error performed with comparable
levels of skill overall. For lead times up to 4 months, however,
the multi-model hindcasts indicated slightly higher scores on
average, whereas for longer lead times the perturbed parameter
hindcasts gave slightly better results on average.

Results from the stream 2 simulations are shown in Figure 3.2,
for ensemble average hindcasts of surface air temperature
spatially averaged over the entire Northern Hemisphere
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Table 3.2: Overview of the forecast quality of the stream 2 seasonal multi-model hindcasts for 2–4 months ahead. The quantity shown is the
Brier skill score (BSS)*100, with values above zero indicating positive skill compared with a climatological reference forecast. Positive BSS is
shown in green, negative BSS in red. Significantly positive (negative) BSS are indicated in strong green (red). The events summarised in the
table are warm and cold 2 m temperature (T2m) and wet and dry conditions (precipitation) for the JJA and DJF seasons. The definition of
these events is based on model terciles. For verification, ERA-40 was used in the case of T2m, and GPCP for precipitation. The regions
shown are the standard land regions, following Giorgi and Francisco (2000).
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extratropics, and precipitation averaged over the tropics. In both
cases, the multi-model ensemble shows a higher anomaly
correlation than any of its constituent individual models.When
considering ensembles of equal size (nine members), the
perturbed parameter ensemble displays similar skill to the multi-
model ensemble, and in general the two methods also give
similar estimates of the spread of possible outcomes. The skill
of the multi-model ensemble improves somewhat when all 45
of its members are pooled in order to provide a better combined
sample of initial state and model uncertainties.

Figure 3.3 gives a further comparison between the multi-model
and perturbed parameter approaches, for hindcasts up to
7months ahead. This is based on a probabilistic measure of skill
which credits both the ability to discriminate between different
events, and to forecast probabilities which are reliable, in the
sense that an event predicted x% of the time should occur in
practice x% of the time. Here, the multi-model ensemble gives
slightly better results than the perturbed parameter ensemble on
average, although the relative performance varies according to
the region, variable, and lead time considered. Figure 3.4 shows
that the new stochastic physics results provide a level of skill
comparable to that of the multi-model ensemble on average,
based on a similar comparison. Overall, we find that the multi-
model ensemble gives seasonal predictions competitive with
(and in some respects better than) those obtained in previous
projects, while the stochastic and perturbed parameter
techniques provide promising indications that a similar level of
performance can potentially be achieved through the application
of systematic techniques for the sampling of uncertainties in a
single-model system.

In ENSEMBLES, coordinated multi-model hindcasts on the
annual time range have been performed for the first time. Four

of the participating modelling groups (Table 3.1) extended the
length of the stream 2 hindcasts for the November start dates
beyond seasonal time-scales up to 14months.An approximately
linear growth of tropical Pacific SST RMSE and ensemble
spread for themulti-model was found (Weisheimer et al., 2009).
The SST anomaly correlation reached a level of about 0.5 around
forecast month 9 and stayed relatively constant thereafter.

3.2.3 Results of the decadal hindcasts

The basis for investigating decadal prediction rests on evidence
from observed low-frequency climate variations around the
world, results from idealised modelling studies, and evidence
that forced climate change can also provide skill (for a recent
review, see Meehl et al., 2009). The ENSEMBLES stream 2
decadal hindcasts provided a first opportunity to assess the
benefits of combining projections from different models in a
coordinated experiment, following initial studies carried out
with individual climate models (Smith et al., 2007; Keenlyside
et al., 2008; Pohlmann et al., 2009). The inevitable existence of
simulation biases in the models used for the decadal hindcasts
necessitates (as in seasonal prediction) the use of strategies to
account for these systematic errors when comparing forecasts
against observations. This was achieved by expressing each
hindcast as anomalies relative to either a long-termmodel clima-
tology (if available), or to the average of other hindcasts. Some
groups also adopted a strategy of initialising their hindcasts
using observed anomalies added to a model climatology in
order to reduce model drift during hindcasts, whereas others
initialised using full observed fields in order to provide starting
conditions as close as possible to the real climate system. The
optimal strategy for forecast production in the presence of
model biases remains an open question for future work.

Figure 3.2: Anomaly correlation for T2m spatially averaged over the Northern Hemisphere extratropics (left), and precipitation averaged over the
tropics (right), as a function of start date and lead time estimated over the period 1960–2005. The top row shows results for the perturbed
parameter ensemble (blue) and for two versions of the multi-model (green – reduced ensemble with nine ENSEMBLE members; orange – full
ensemble with 45 ENSEMBLE members). The reduced multi-model ensemble is constructed by selecting randomly from the 45 members,
ensuring that at least one member is selected from each participating model. The bottom row shows the individual models contributing to the
multi-model ensemble (blue – ECMWF, green – Météo France, orange – INGV, cyan – IfM Kiel, red – Met Office). Scores are grouped according to
the four start dates per year. For each start date, correlations for forecast lead times of 2–4 months and 5–7 months are displayed separately.



Figure 3.5 shows that each of the models contributing to the
multi-model ensemble achieves modest skill in projections of
surface temperature anomalies averaged over the Northern
Hemisphere extratropics. The skill increases for longer lead
times, being larger for 6–10 years ahead than for 3–14 months
or 2–5 years ahead. This is because the forced climate change
signal, the sign of which is highly predictable, is greater at
longer lead times. Encouragingly, the multi-model ensemble
mean, which consists of the average of twelve individual projec-
tions, gives somewhat higher scores than any of the individual
models, whose projections are derived from three members
with perturbed initial conditions.

The perturbed parameter hindcasts also show improved skill
when results from the individual model variants are averaged to
form an ensemble mean (in this case there is a single hindcast
from each variant, so the ensemble mean is made from nine
members). Figure 3.6 shows an example, plotting a time-series
of global pattern correlations for 9-year average hindcasts of
surface temperature throughout the stream 2 period.While indi-
vidual ensemble members sometimes give better results than the
ensemble mean (data not shown), the average skill of indi-
vidual members is consistently lower (compare dashed and
solid red curves). The results also show that the skill increases
for more recent hindcasts. In order to diagnose sources of skill,
the blue curve of Figure 3.6 shows ensemble mean results from
a parallel ensemble of ‘NoAssim’hindcasts containing the same
external forcing from greenhouse gases, sulphate aerosols,
volcanoes and solar variations, but initialised from randomly
selected model states rather than analyses of observations. The
results replicate the trend in skill found in the initialised hind-
casts, showing that this arises mainly from the strengthening
influence of external forcing, particularly that due to anthro-

pogenic greenhouse gases. However, the average correlation
skill is slightly smaller in the NoAssim hindcasts (0.25 versus
0.30), indicating that initialisation provides a modest increase in
average skill.

As an example of the effects of initialisation, Figure 3.7 shows
ensemble mean surface temperature anomalies for December
2005–November 2008 from three projections initialised from
November 2005. These consist of the ENSEMBLES multi-
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Figure 3.3: Scatter plot of Brier skill scores (BSS) for the multi-model
and perturbed parameter forecasting systems. The dots represent the
BSS estimated for the standard land regions of Giorgi and Francisco
(2000), for T2m and precipitation and for the two events ‘anomalies in
lower or upper terciles’. Results are from the stream 2 hindcasts for
lead times of 2–4 months and 5–7 months ahead, calculated from all
available start dates. The multi-model results are based on all 45
members, compared with nine for the perturbed parameter hindcasts;
however, the BSS scores were adjusted using the technique of Ferro
(2007) to remove the effects of differing ensemble size.

Figure 3.4: As for Figure 3.3, but comparing the multi-model and
stochastic perturbed parameter forecasting systems. Results are for
a subset of the stream 2 hindcasts covering the May and November
start dates from 1991–2005, for lead times of 2–4 months and 5–
7 months ahead. The multi-model results are based on all 45
members, compared with nine for the stochastic physics hindcasts;
however, the BSS scores were adjusted to remove the effects of
differing ensemble size, as in Figure 3.3.

Figure 3.5: Anomaly correlation coefficient for near-surface
temperature over the NH extratropics from the ENSEMBLES decadal
hindcasts over the period 1960–1995. The three groups of bars stand
for lead times of 3–14 months, i.e., the first forecast year (left), for lead
times of 2–5 years (middle), and lead times of 6–10 years (right). The
vertical bars indicate the uncertainty range based on a bootstrap
resampling. Colour code: blue – ECMWF, green – CERFACS, orange –
IfM Kiel, cyan – Met Office HadGEM2, red – multi-model ensemble.
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Figure 3.6: Time-series of correlations between hindcast and observed global patterns of near-surface temperature anomalies, for hindcasts
of nine-year means during the stream 2 period. The red dashed curve shows average scores for individual variants of HadCM3 included in the
DePreSys perturbed parameter ensemble, and the solid red line shows scores for the ensemble mean of the nine constituent variants. The
blue curve shows scores for the ensemble mean of a corresponding ‘NoAssim’ perturbed parameter ensemble in which hindcasts are driven
by the same time-dependent specification of external radiative forcing anomalies, but lacking the initialisation from analyses of atmosphere
and ocean observations used in the DePreSys hindcasts. Time-dependent forcing anomalies arise from anthropogenic greenhouse gases and
sulphate aerosols from the SRES A1B scenario, and projected natural forcing from volcanoes and solar variation, assuming no prior
knowledge of volcanic eruptions after the initialisation date.

Figure 3.7: Surface temperature anomalies (°C) for December 2005–November 2008, relative to 1961–2001. Verifying observations were
compared against initialised ensemble mean projections from the DePreSys perturbed parameter and multi-model forecasts started from
November 2005 in ENSEMBLES, a further initialised projection from the original DePreSys single-model system of Smith et al. (2007), and also
against uninitialised climate change projections from the IPCC AR4 assessment. The ensemble means were created from 9, 12, 10 and 22
simulations, respectively.



model and perturbed parameter experiments, plus a projection
from the original DePreSys system of Smith et al. (2007), based
on ten simulations with a single model sampling initial state
perturbations. These were compared against verifying
observations (top panel), and also against the ensemble mean
of the set of uninitialised climate change simulations available
from the IPCC AR4 (bottom right). All the initialised
projections show enhanced warming in the North Atlantic
compared with the IPCC projections, in better agreement with
observations; and the original and perturbed parameter
DePreSys projections also capture the enhanced warming
observed over the Eurasian landmass. The IPCC simulations
and the initialised perturbed parameter experiments
overestimate the observed global mean warming by about
0.2°C, while the ENSEMBLESmulti-model projection gives a
global mean change consistent with observations. None of the
initialised projections capture the observed cool anomalies
found in northern tropical regions of the Pacific Ocean (partly
due to overestimation of the global mean warming); however,
they do capture the spatial pattern of anomalies in the Pacific
(relatively warm anomalies at northern mid-latitudes compared
with the tropics) to some extent, which is not the case in the
IPCC simulations. These results illustrate that initialised decadal
forecasts have the potential to provide better information than
traditional climate change projections; however, the differences
between the alternative systems shown in Figure 3.7 (see also
Appendix 1) also illustrate the research challenges associated
with building improved decadal prediction systems in future,
informed by the pioneering studies performed in
ENSEMBLES.

3.3 Decadal to centennial prediction
system

An overarching aim of the ENSEMBLES project has been to
produce projections of climate in which sources of uncertainty
are quantified and projections are expressed in terms of
probability distribution functions (PDFs). Uncertainty in
decadal–centennial projections arises from uncertainties in
future emissions of greenhouse gases and other forcing agents,
unforced natural (‘internal’) variability in climate, and
uncertainties in formulation of models (see Section 3.2).

As explained in the Introduction, the principal tool used to
quantify both internal variability and modelling uncertainties in
our long-term climate projections was the ‘perturbed parameter’
approach, whereby uncertainties in global climate model
parameters which determine the magnitude of climate
feedbacks associated with physical, chemical and biological
processes are systematically explored. Developments in this
area are reported in Section 3.3.1, while a method to convert
some of our perturbed parameter ensemble results into
probabilistic climate change projections is described in Section
3.3.2. In these projections, uncertainties due to internal
variability were included via the use of long model simulations
spun up from initial conditions statistically independent of
recent observed conditions (as is currently typical in long-term
climate projections). A topic for future work is to assess the
prospects for constraining some aspects of internal variability in
projections beyond a decade ahead, by initialising the model
with observations, as in Section 3.2. Finally, in Section 3.3.3

we describe work using a simple climate model to explore the
implications of uncertainties in the global response of physical
and carbon cycle climate feedbacks for the setting of policy-
relevant carbon emissions targets.

3.3.1 Sampling uncertainties in future climate
change using perturbed parameter ensembles

Aversion of the HadCM3 climate model was adapted to run on
personal computers by Oxford University, under the
climateprediction.net initiative. The model was distributed to
members of the general public to run multi-thousand-member
ensembles exploring the sensitivity of themodel to perturbations
of model parameters (Murphy et al., 2004). This highly
successful project, which allowed over 300,000 people to
participate directly in ensemble climatemodelling, was taken up
by the BBC and made the subject of two television
documentaries, winning the 2007 Prix Europa Internet Project of
theYear award. The key early result of this project (Stainforth et
al., 2005) related to climate sensitivity, the equilibriumwarming
on stabilising greenhouse gas levels at, for example, 550 ppm
CO2-equivalent. It was found that perturbations to model
parameters were much more likely to substantially increase the
climate sensitivity of this model than to substantially reduce it,
reflecting in a complex general circulationmodel the asymmetric
uncertainty in climate sensitivity consistently found in
observational estimates based on simple models (Allen et al.,
2006)

This result is illustrated, and updated, in Figure 3.8, which shows
the relative likelihood of the control climates of several thousand
members of the initial climateprediction.net ensemble, consisting
of simulations using HadCM3 coupled to a simple mixed-layer
ocean (the ‘slab’model configuration, HadSM3). The likelihood
measure is based on a simple goodness-of-fit to observed surface
pressure, temperature and rainfall (more complex likelihood
measures give similar results), plotted against the equilibrium
climate sensitivities of the different model variants. Points are
coloured according to the values assigned to one of the
parameters of the model, the ‘entrainment coefficient’, which
controls the mixing between ascending plumes and the
surrounding environment in the HadCM3 parameterisation of
convection. This parameter was found to have the largest impact
on sensitivity. The highest sensitivities, in excess of 10°C, are
associatedwith low values of this parameter (red symbols) which
consistently give unrealistic control climates. The distribution of
model variants with the standard value (green symbols),
however, also displays this characteristic asymmetry, with a tail
of not-particularly-unlikely model variants extending over 7°C.
Increasing the entrainment coefficient (blue symbols) also
displaces the distribution of sensitivities inmodels with plausible
control climates upwards. This illustrates the importance of non-
linear interactions between parameters in perturbed parameter
ensembles, because sensitivity is reduced if the entrainment
coefficient is increased on its own (Murphy et al., 2004).

Figure 3.9 highlights a further suite of perturbed physics
ensembles performed at the Met Office Hadley Centre
(MOHC), projecting time-dependent climate change using the
configuration of HadCM3 including a full dynamical ocean
component (climateprediction.net also carried out ensembles
of this type). In this set of experiments, parameters in one of the
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model components (atmosphere, ocean, sulphur-cycle and
terrestrial carbon cycle) were varied, while parameters in the
other components were held fixed. For global mean surface
temperature, uncertainties in atmosphere parameters have a
relatively important impact on the ensemble spread via
differences in the surface and atmospheric physical feedbacks
(black lines in Figure 3.9). Feedbacks associated with clouds
are the dominant source of uncertainty, but other feedback
processes also contribute to the spread of projected outcomes
(Webb et al., 2006; Collins et al., 2009; Yokohata et al., 2009).
Uncertainties in the parameters in the terrestrial carbon cycle of
the model have a similarly important effect on the global mean
(red lines in Figure 3.9) via differences in feedbacks associated
with the changing balance of carbon sinks and sources (Booth

et al., 2009). Ocean-component and sulphur-cycle-component
parameter uncertainties have a smaller effect on the global
mean temperature response (Collins et al., 2007; Brierley et al.
2009a, 2009b).

While the RT1 system for probabilistic projections uses perturbed
parameter ensembles based on HadCM3, the effects of some of
the parameters were comparedwith corresponding perturbations
applied in another model (the Freie Universität Berlin EGMAM
model). Figure 3.10 shows a comparison of the effects of
perturbing three key cloud and convection parameters in the two
models. The magnitudes of the changes are different due to
different experimental set-ups: the results show equilibrium
responses to doubled CO2 in simulations employing the slab
ocean configuration of HadCM3, whereas the EGMAM
simulations show smaller changes, because a full dynamical
ocean component was used to simulate the early stages of the
transient response to an instantaneous change in CO2.
Nevertheless, the results show that the global mean temperature
response of the two sets of experiments is highly correlated.
Further analysis of the components of the feedbacks associated
with the global temperature response is discussed in Niehörster
(2009). This comparison gives further evidence that perturbing
the parameters within a climate model is a useful way of
systematically exploring uncertainty, and thus provides a suitable
technique for producing probabilistic projections of climate
change.

3.3.2 Construction of probabilistic climate change
projections

Given a suite of perturbed parameter ensembles, there are further
steps required to produce probabilistic projections expressed in
terms of PDFs.An overview of the approach is given byMurphy
et al. (2007), the detailed implementation of which follows that
used in probabilistic projections recently issued for the UK

Figure 3.8: Climate sensitivity versus an estimate of the relative
likelihood of different model variants, selected from a multi-
thousand-member perturbed parameter ensemble of the
atmosphere-mixed layer (‘slab’) ocean configuration of the HadCM3
climate model. The different colours denote different values for the
convective entrainment parameter in the different model variants.

Figure 3.9: Global-mean temperature anomalies from 1860–2100 in
perturbed parameter HadCM3 experiments forced by historically
observed changes in anthropogenic and natural forcing agents and
future greenhouse gas and sulphate aerosol emissions under the
SRES A1B scenario, compared with observations to 2000. The
different colours indicate ensembles with perturbations to
parameters in different model components (as indicated in the
legend), while keeping parameters in the other components fixed.

Figure 3.10: A comparison of perturbed parameter experiments
performed with different ENSEMBLES models. The figure shows
global mean temperature responses of perturbed variants of
HadSM3 and EGMAM models for low (squares) and high (triangles)
values for the convective entrainment rate (red), the rainout
efficiency of cloud droplets (blue), and the cloud ice fall speed (grey)
parameters. The standard model variants are shown in black. Note
the differences in the scale of the axes, which is due to the different
experimental set-up for each ensemble (see text).



(Murphy et al., 2009) except that the RT1 projections (Harris et
al., 2009) do not include downscaling beyond the scale of global
climate model grid boxes. In ENSEMBLES, finer-scale
projections are provided by RT2B, using an ensemble of regional
climate model simulations designed in RT3. The steps involved
in producing the RT1 probabilistic projections were as follows.
• Production of an ensemble of around 300 equilibrium 1×CO2
and 2×CO2 simulations using HadSM3. Each pair of
simulations was carried out using a variant of the model
distinguished by different perturbations to a set of 31
parameters controlling surface, atmospheric and sea-ice
processes. Some variants sampled perturbations to a single
parameter (Murphy et al., 2004), whereas many sampled
multiple perturbations (Webb et al., 2006; Collins et al.,
2009). This ensemble was run on the Met Office
supercomputer, being necessarily smaller than the
corresponding distributed computing ensemble produced by
climateprediction.net (Figure 3.8), but also allowing the
archiving of a detailed set of regional climate diagnostics to
provide a basis for the probabilistic projections described
below.

• Construction of a statistical emulator allowing the historical
climate and the response to doubled CO2 of HadSM3 to be
rapidly estimated for any combination of input parameter
values. This allowed large numbers of estimated results to
be produced, making it possible to sample the entire
parameter space of the model defined from expert-specified
prior distributions.

• Production of smaller ensembles using the atmosphere
component of HadCM3 coupled to a full dynamical ocean
component. These ensembles (described above and shown
in Figure 3.9) simulate transient climate change in response
to historical and future changes in forcing, and allow us to
sample uncertainties in additional Earth system processes.

• Implementation of a time-scaling approach which maps
equilibrium changes in climate variables at a regional level
to transient climate changes under specified emissions
scenarios. This allows transient changes to be estimated for
any point in the model parameter space, providing a basis
for the generation of probabilistic estimates of regional, time-
dependent climate change. The time-scaling combines a
method for inferring transient patterns of change from
equilibrium patterns (calibrated using equilibrium and
transient model simulations with corresponding parameter
settings) with projections of global mean temperature
obtained from a simple climate model. The simple model
uses input parameters fitted to the HadCM3 ensemble output
in order to sample uncertainties due to the main global-scale
feedbacks accounted for in Figure 3.9. The method is based
onHarris et al. (2006), with updates summarised byMurphy
et al. (2009).

• Estimated climate changes are converted into probabilistic
projections using a general Bayesian statistical framework
designed to support inference of real world information
from complex but imperfect models (Goldstein and
Rougier, 2004; Rougier, 2007). Probabilities are obtained
by integrating changes sampled at different points in the
model parameter space, accounting for relationships
between different variables and weighting each point in
parameter space (i.e., each possible variant of HadCM3)
according to the likelihood of each variant. Likelihood
estimates are based on the ability to reproduce observed

spatial patterns of seasonal-mean climate for sea surface
temperature, land surface air temperature, precipitation,
pressure at mean sea level, short-wave and long-wave
radiation at the top of the atmosphere, short-wave and long-
wave cloud radiative forcing, total cloud amount, surface
fluxes of sensible and latent heat, and latitude-height
distributions of zonally averaged atmospheric relative
humidity. The ability of the scaled transient projections to
reproduce historical trends in large-scale temperature
variables also contributes to the likelihood weights. The
likelihood is calculated in a reduced dimension state space
and takes into account covariances between different
variables.

• The calculation includes an estimate of the additional
effects of structural modelling uncertainties, necessary
because some simulation errors in HadCM3 (as in any
model) arise from basic choices made when building the
model in the first place (see also Section 3.2), and cannot
be resolved by varying the model parameters. The effects
of structural errors in surface and atmospheric processes
are estimated by using the emulator to find points in the
parameter space of HadCM3 which best represent the
behaviour of alternative coupled atmosphere-mixed layer
ocean models in the CMIP3 archive used by the IPCCAR4
(Meehl et al., 2007). Due to structural differences between
HadCM3 and the other models, this calculation fails to
replicate perfectly the projections of the latter, and the
results are used to inflate the variance and adjust the mean
of the future PDFs. This calculation assumes that structural
differences between models are reasonable proxy
estimates for the effects of structural errors in HadCM3
relative to the real world, and cannot account for the effects
of biases common to all models. The methodology does
not support the treatment of structural errors in ocean
transport and carbon cycle processes to the same degree;
however, a simpler ad hoc allowance is made for these, by
including results from multi-model ensembles
(Friedlingstein et al., 2006; Meehl et al., 2007) alongside
those of Figure 3.9 when sampling possible settings for
global mean feedback values in step (4) above.

There are various ways of presenting the spatio-temporal
information contained within the PDFs. Figure 3.11 shows
European maps of the 20-year 10th, 50th and 90th percentiles
of surface air temperature and precipitation changes under the
SRES A1B scenario at the end of the 21st century expressed
as anomalies with respect to a 1961–1990 baseline. Median
temperature changes vary substantially with location, and are
largest in the Mediterranean region in summer and in north-
east Europe in winter. The uncertainty, as measured by the
10–90% range, is large for this time period – as much as 10
degrees Celsius in some locations. This is due to a
combination of factors; parameter uncertainty in HadCM3,
structural uncertainty from the CMIP3 ensemble, carbon cycle
feedback uncertainty, internal variability, and time-scaling
uncertainty. No single source of uncertainty dominates. For
the projections of changes in precipitation, the canonical
signals of summer Mediterranean drying and winter northern
Europe wetting are evident, but again the uncertainty range is
wide. For many grid boxes there are significant probabilities
of both drier and wetter future climates, and this may be
important for impacts studies.
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Figure 3.11: The ENSEMBLES probabilistic projections for Europe under the A1B emissions scenario. The maps show the 10% (top row), 50%
(median; middle row) and 90% (bottom row) percentiles of (a) European surface temperature change and (b) European percentage precipitation
change, for the summer season for the period 2080–2099 relative to the 1961–1990 baseline period.

(a) (b)



Figure 3.12 shows alternative formats in which PDFs can be
presented; in this case the distributions are for the Gulf of Finland
grid box. Plumes show changes in temperature and precipitation
through the 21st century under the A1B scenario. The data
underlying these figures are supplied in numerical form in terms
of 10,000 distribution sample points per grid box and can be
presented as a contour plot in order to highlight potential
relationships between variables. The data are available from
http://ensembles-eu.metoffice.com/secure/RT6_data_230609/
data_for_RT6.html.

3.3.3 Development of methodologies for
interpreting ensembles using simple
climate models

While ensembles of global climate model projections are
needed to assess the effects of uncertainties in detailed Earth
system processes, simpler models, constrained by observations
and by the results of more complex models, have an important
role to play in interpreting the implications of the results. Step
(4) of Section 3.3.2 provides one such example. Oxford
University carried out another study of this type, highlighting
the difficulty of using climate sensitivity as the focal benchmark
for climate policy. The non-linear relationship between climate
sensitivity and any quantity that can be observed directly raises
fundamental issues in the statistical interpretation of ensembles
(Frame et al., 2005). The ENSEMBLES project has helped to
elucidate these methodological issues, but many questions
remain open.

This naturally raises the question of whether alternative
benchmarks of climate system response might be more
tractable: Allen et al. (2009) concluded that the peak warming
response to a given total injection of carbon into the atmosphere
was better constrained by observable quantities than the
equilibrium response to a stabilisation scenario, and remarkably
insensitive to the timing of carbon dioxide emissions. This is
illustrated by Figure 3.13, which shows the warming induced by
three CO2 emission profiles, each of which involves a total
cumulative emission of one trillion tonnes of carbon (the
integrals under the three emission curves on the left are the
same). The best-fit temperature responses (coloured lines in the
right panel) are almost indistinguishable, dwarfed by the
uncertainty in the response (grey shading). This raises the
prospect of using cumulative carbon emissions as a policy
benchmark; a highly policy-relevant output of ENSEMBLES
research that has fed directly into the UNFCCC negotiations.

3.4 Summary

Research Theme 1 developed, assessed and applied new
systems for seasonal–decadal forecasting, and for multi-decadal
projections of climate change. Substantial effort has resulted in
the production of improved climate and Earth system models,
an improved database of ocean observations, and better methods
of using these and other observations to initialise the models for
near-term climate forecasts. In addition, there has been a major
focus on methods for improved quantification of the inevitable
uncertainties arising frommodel imperfections, as well as from
internal climate variability.
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Figure 3.12: Evolution of the median (white curve) and the 50, 60, 70,
80 and 90% confidence ranges for: (a) 20-year mean winter surface
temperature change for the Gulf of Finland grid point; (b) percentage
change in 20-year mean winter precipitation for the Gulf of Finland; (c)
contours of the Winsorised sampled joint probability distribution
function for surface temperature change and percentage precipitation
change for the winter season for the Gulf of Finland, for the period
2080–2099 relative to the 1961–1990 baseline period.

(a)

(b)

(c)
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As a result, ENSEMBLES has delivered three approaches for
seasonal–decadal prediction, consisting of an updated method
based on a multi-model ensemble of models drawn from
different European modelling centres, plus two novel
methodologies applying either stochastic or sustained
perturbations to the outputs of physical parameterisation
schemes in the atmospheric component of a single model. For
seasonal–annual forecasts, the multi-model ensemble results
demonstrate performance competitive with, and in some aspects
superior to, the previous European system from DEMETER.
Themulti-model results also provide levels of hindcast skill and
estimates of the associated uncertainties comparable to or (in
some aspects) slightly better than those of the new
methodologies. However, our demonstration that the stochastic
physics and perturbed parameter methods can provide results
of similar utility to multi-model hindcasts is itself a significant
result, as there is the potential to optimise the design of such
systems to improve performance in future; something that has
not been attempted during ENSEMBLES. We also stress that
care is needed in interpreting our results. The skill of different
systems depends not just on the technique for sampling model
uncertainty, but also on the baseline skill of the participating
models, and the quality of the initialisation. For example, some
of the improvements found in multi-model ensembles could
arise from improved sampling of initial state uncertainties when
different single-model ensembles are combined (Figure 3.1), as
well as from better sampling of modelling uncertainties per se.
Also, the three techniques for sampling modelling uncertainty
are essentially complementary to one another, so should not be
seen as competing alternatives: the multi-model approach
samples structural variations in model formulation, but does not
systematically explore parameter uncertainties for a given set
of structural choices, whereas the perturbed parameter approach
does the reverse. The stochastic physics approach recognises
the uncertainty inherent in inferring the effects of parameterised
processes from grid box average variables which cannot
account for unresolved sub-grid-scale organisations in the
modelled flow, whereas the other methods do not. There is
likely to be scope to develop better prediction systems in future
by combining aspects of the separate systems considered in
ENSEMBLES.

The decadal hindcasts build on pioneering studies with
individual models by several ENSEMBLES partners (Smith et
al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009), and
constitute the first coordinated international experiment in this
area. Skill is found in projections of surface temperature at
large regional scales, for multi-year averages out to a decade
ahead. The skill is found to be greater for hindcasts started
from more recent dates (1990s and later) compared with the
1960s–1980s, due mainly to the emerging climate change
signal. Combining hindcasts from different model versions, in
either multi-model or perturbed parameter ensembles, is found
to increase skill, as is also the case in the seasonal–annual
hindcasts. The added value of initialising hindcasts from
observations was also assessed, finding evidence of a modest
but potentially useful enhancement to the skill arising from
forced climate change. A decadal forecast started from late
2005 shows enhanced warming in the Northern Hemisphere
compared with uninitialised climate change projections; a
feature supported by verification against observations for the
period 2006–2009. The ENSEMBLES effort places European
groups in the vanguard of emerging worldwide efforts to
provide better information on climate variability and change
for the decadal time-scale (Meehl et al., 2009), and this new
arm of climate research is likely to develop significantly in
future.

For decadal–centennial projections, a series of perturbed
parameter ensembles were designed and run to sample
uncertainties in key processes, sampling carbon cycle feedbacks
in addition to uncertainties arising from surface and atmospheric
feedbacks, ocean transport, and human-caused forcing from
sulphate aerosols. The model simulations were processed using
an advanced statistical framework designed to support the
inference of probabilistic projections of real world systems from
complex but imperfect models of those systems (Goldstein and
Rougier, 2004; Rougier, 2007). The methodology allows us to
produce thousands of plausible outcomes for 20-year average
temperature and precipitation changes during the 21st century
for Europe. The effects of structural model errors in atmospheric
processes are accounted for by using the perturbed parameter
ensembles to ‘predict’ the results of an ensemble of alternative

Figure 3.13: Warming (right panel) induced by three CO2 emission profiles (left panel), each of which involves total cumulative emissions of one
trillion tonnes of carbon (Allen et al., 2009).
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4.1 Introduction

4.1.1 Background and linkages

One of the prerequisites for all studies of climate change and its
consequences is the existence of climate simulations at the
global scale from which coherent atmospheric, oceanic or
surface field time-series can be extracted for further modelling
or statistical studies. Though such global simulations are
produced for assessment by the IPCC, the constraints of such
a wide international exercise do not allow the flexibility and
interaction in the choice of scenarios and the storage of datasets
featured in the ENSEMBLES project. Therefore the produc-
tion of a coordinated new set of global climate simulations with
all the most advanced European climate models was consid-
ered to be an essential part of the ENSEMBLES project. This
production was then defined as the main and central task of a
dedicated Research Theme 2A (RT2A). Such global simula-
tions have direct interactions with several of the other Research
Themes, since their results are needed as lateral boundary
conditions and forcing fields for driving the regional model
simulations (RT2B and RT3), in validation studies (RT5),
studies of feedbacks in the Earth system (RT4), or climate
change impact studies (RT6). An ambitious objective of the
project was to develop, in collaboration with RT7, a new
stabilisation scenario corresponding to the European climate
policy (called the E1 scenario) and then apply it in the second
stream of simulations using the improved versions of the Earth
system models developed in RT1. However, this objective
could only be planned for the end of the project, since it needed
input from two other Research Themes (RT1 and RT7). In order
to be able to provide results for use by the other Research
Themes, a first set of simulations (Stream 1) was performed
during the first two years of the project, based on the then avail-
able versions of the climate model and using the IPCC scenarios
and methodology.

4.1.2 Work completed

The European global modelling groups contributing to ENSEM-
BLES all developed global climate models coupling the key
components of the climate system (atmosphere, ocean, sea ice),
which participated in the assessment of climate simulations by
the IPCC for its Fourth Assessment Report (AR4). Some also
developed additional model components, such as carbon cycle or
aerosol transport. The ENSEMBLES project first offered the
opportunity to better coordinate the European participation to the
AR4, and then to extend themodelling effort beyond theAR4 by
carrying out a second set of simulations (Stream 2) using

improved models and also by defining a new stabilisation
scenario. The coordination of the simulations allowed a detailed
definition of the set of simulations and the forcings to be used by
the European models in the AR4. Effort was made in comple-
menting the data storage at the IPCC database at PCMDI, by
identifying further high-resolution datasets that would be most
useful for subsequent analyses of the climate processes, and for
potential impact studies by various user groups. The high
volume of the datasets required storage at established and
reliable database centres such as ECMWF for the seasonal
simulations, and CERA for the climate scenarios. Further-
more a very significant effort was needed from the modelling
groups in terms of further data processing of their simulations
to extract the required fields and convert them to the common
format appropriate for the databases.

Initially all time-scales from seasonal to centennial were
included in the RT2AResearch Theme. However, a large part
of the new developments for the seasonal to decadal prediction
have been made in the framework of another Work Package
(RT1), and although the production of the bulk of the seasonal
to decadal simulations were part of the modelling effort of
RT2A, they have also been defined in close collaboration with
RT1, and their results have been regrouped and reported in the
RT1 description of a ‘seasonal–decadal prediction system’
(see Section 3.2). Only the storage of the resulting dataset will
be reported here. This section therefore deals essentially with
the centennial simulations.

The global multi-decadal simulations were divided into two
separateWork Packages according to time and the type of forc-
ings to be used. The first Work Package was for the historical
simulations using observed forcings. The second Work
Package was for future simulations using forcings from a few
selected projections based on socio-economic scenarios. The
most straightforward approach to estimating the uncertainties
due to current model formulations in climate simulations is
simply to run a set of simulations with different state-of-the art
models using the same experimental set-up and identical forc-
ings. This multi-model approach has produced a coherent set
of climate simulations which can be further processed in
various ways to define statistical distributions of the climate
response and apply different statistical methods to assess the
probability of climate changes. In order to reduce the other
possible sources of differences between the simulations, a partic-
ular effort was made to carefully define the experiments to be
performed and the forcings to be used by the climate models, so
that the difference between the results could be fully attributable
to differences in the models themselves, so as to allow an esti-
mation of model uncertainties.

4 Production of seasonal to decadal hindcasts and climate change scenarios
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4.2 Description of the forcings used in
the ENSEMBLES multi-decadal
simulations

4.2.1 Design of forcings

The design of the experimentswasmade in such away as to avoid
the so-called ‘cold start’ problem which may arise when the
coupledmodels start from an initial condition inwhich the atmos-
phere and ocean are not satisfactorily balanced, which usually
leads to a climate drift of several decades until a new quasi-equi-
libriumhas been reached.This drift period has to be removed from
the actual climate simulations as it could interferewith the climate
change onewants to simulate. In order to eliminate this problem,
a careful methodology has been devised for the ENSEMBLES
global simulations. Each model started the simulations from a
condition of constant atmospheric concentrations for greenhouse
gases corresponding to a pre-industrial state for which a climate
equilibrium can be assumed. The interest of a control pre-indus-
trial simulation is to provide a reference on the simulated climate
regime in the absence of anthropogenic interference, and to
provide balanced initial conditions from which to start historical
simulations with the observed changes in the external forcings.
The observed values of the forcing corresponding to the year 1860
were chosen as boundary conditions for the pre-industrial control
simulation.

The external forcings that have been considered are of two
different kinds.
• The natural forcings that result from solar and volcanic vari-
ability. These forcings can be specified for the past based on
suitable observations; however, there is currently no generally
accepted method to predict their future evolution.

• The anthropogenic forcings due to the emission of greenhouse
gases and sulphate aerosols, and optionally those due to land-
use changes. For simulations of the future climate, the usual
procedure that has been applied in previous IPCC assessments
is to compute the future changes with the help of so-called
integrated impact assessmentmodels for predefined economic
development scenarios. The economic scenarios retained by
the IPCCAR4 for theCMIP3modelling experimentswere the
SRESmarker scenariosA2,A1B andB1 (seeNakicenovic and
Swart, 2000). These scenarios have been applied for the
Stream 1 simulations in ENSEMBLES so that they could
contribute to the IPCC CMIP3 simulations.

Over the period 1860–2000, two different simulations have been
performed using the observed forcings.
• Afirst simulationwith only the anthropogenic forcings. This
simulation has been used as a starting point for the future
climate scenarios, in order to have a continuous simulation for
the past and the future, without any discontinuity or inhomo-
geneity. Carewas taken in defining the concentration series for
themain greenhouse gaseswith a smooth annual interpolation
between the observed values for the past years and the future
values specified for the different IPCC scenarios. The series
of carbon dioxide (CO2), methane (CH4), nitrogen oxide
(N2O) and chlorofluorocarbonCFC-12 have been interpolated
at annual resolution. The radiative forcing resulting from all
the other halogenated species except CFC-12 has been
converted into the CFC-11 concentration giving the same
radiative forcing.

• A second simulation using, in addition to the anthro-
pogenic forcings of the first simulation, the observed
natural forcings due to solar and volcanic variability. This
simulation was mainly used to assess the effect of natural
forcings and for comparison with observed climate series,
and extended up to the year 2000. The natural forcings
were specified according to the solar irradiance proposed
by Solanki and Krivova (2003), and an updated version of
Sato et al. (1993) for volcanic forcing.

In order to provide a contribution to the IPCC CMIP3 simu-
lations for theAR4, all the ENSEMBLES Stream 1 simulations
were run over 2000–2100 with the recommended SRES
scenarios (A2, A1B, B1). In addition, other optional simula-
tions in CMIP3 (1%/year CO2 increase until 2×CO2 and
4×CO2, committed simulation with constant 2000 concentra-
tion, continuation of the scenarios A1B and B1 with constant
concentrations beyond 2100) were also performed with most
of the models.

4.2.2 Stream 2 forcings

The same methodology was used for the ENSEMBLES
Stream 2 simulations, in which the models with a carbon
cycle were also driven by the atmospheric CO2 concentrations
(observed and specified in the different scenarios) and the
carbon cycle computations used to diagnose the implied fluxes
between the different carbon reservoirs. The main differences
were mainly from changes in the models, the introduction in
most of the models of the land-use changes in Stream 2
(versus a single model in Stream 1), and the choice of different
scenarios.

In Stream 2 only two main scenarios were considered. First,
a rehearsal of the A1B scenario with new versions of the
models in order to extend the size of simulations for this
scenario, which is considered the most likely in the absence
of a climate policy. Secondly, a new stabilisation scenario
based on climate policy measures to limit the radiative forcing
to that equivalent to 450 ppm of CO2 (scenario E1). The
construction of this scenario is described in more detail later.

The different scenarios considered in ENSEMBLES span a
large variety of greenhouse gas concentration evolution trajec-
tories for the future and illustrate the large uncertainties due
to different possible options to be considered in future devel-
opment paths (Figure 4.1).

Besides the well-mixed greenhouse gas concentration, other
forcings maps were provided for the distribution of ozone
concentrations, sulphate aerosols, and land use.

4.3 Production and results of the Stream 1
IPCC simulations

The modelling groups involved (CNRM, DMI, IPSL, METO-
HC, MPIMET, NERSC and FUB) performed the Stream 1
simulations using the common set of agreed forcings for the
historical simulations over the period 1860–2000, and for the
three recommended IPCC scenariosA2,A1B and B1 over the
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21st century. Some simulations were extended beyond the
year 2100 with constant atmospheric concentrations from the
B1 and A1B scenarios. Additional simulations with a 1%
increase of CO2 per year with stabilisation at 2×CO2 and
4×CO2 were also performed.

A summary of the different atmosphere–ocean model
combinations used in the RT2AStream 1 simulations is shown in
Table 4.1. Table 4.2 gives an overview of the availability of the
Stream 1 simulations that contributed to the multi-model
ensemble developed in the project.

Figure 4.1: Evolution of the greenhouse gas concentrations for the historical period 1860–2000 and for the different scenarios: A2, A1B-S1 and
B1 are the IPCC SRES marker scenarios used in Stream 1; A1B-Image and A1B-450 (E1) are the new Stream 2 scenarios with emissions
produced by the IMAGE integrated assessment model.

Table 4.1: Summary of the main features of the models used in Stream 1.

Table 4.2: The multi-model simulations performed in ENSEMBLES Stream 1.The symbol • denotes an available simulation, and the figure after it
denotes the size of the ensemble in case an ensemble of several similar simulations is available. The columns are: GA – historical forcing by
GHGs and aerosols; +SV – the addition of solar and volcanic forcing, ‘other’ – other combinations of forcings; B1, A1B and A2 – the SRES 2000–
2100 scenarios; 1% CO2 are the simulations with 1%/year increase in CO2 up until two or four times its pre-industrial concentration.

1860–2000 (20CM3) SRES Scenarios 1%/year CO2Models 
GA GA+SV other B1 A1B A2 2 CO2 4 CO2

HadGEM1 3 3 2
IPSL-CM4 
ECHAM5 
+DMI 

3 2 3 3 3 3

EGMAM  3 3 3 3
INGV-CMCC     
CNRM-CM3 
BCM2 
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4.3.1 Results of the Stream 1 simulations

The Stream 1 ENSEMBLES simulations have provided amajor
contribution of the Europeanmodelling groups to the IPCCAR4
assessment. These simulations are generally of high quality and
can be used as a representative basis for studying the climate
response to increasing greenhouse gases. Some basic results for
the temperature and precipitation are provided as an illustration
of the projected changes.

4.3.2 Temperature projections

Arobust picture of temperature changes among the contributing
models was found, with the largest temperature increase occur-
ring over the Arctic in boreal winter, little warming over the
Southern Ocean, and larger warming over land than over ocean
(Figure 4.2). In boreal summer the warming is more confined to
continents and sea-ice-covered areas of the Southern Ocean. The
patterns of change were found to be similar for different
scenarios, with the most pronounced warming in A2.

4.3.3 Precipitation projections

All models simulate a global mean precipitation rise, but with
a weaker signal-to-noise ratio than for the temperature signal.
As an example of the larger uncertainty in precipitation
response, Figure 4.3 shows the geographical distribution of the
number of models with simulated precipitation increase. In
general, precipitation increases along the intertropical conver-
gence zone (ITCZ) and decreases in the subtropics. A robust
feature across all models is the mid- to high-latitude precipita-
tion increase (which is most pronounced during winter in each
hemisphere) associated with increased water-holding capacity
of the warmer atmosphere and poleward moisture transport. In
winter (DJF), precipitation is reduced over Central America,
North Africa and the Mediterranean. In summer (JJA), the
precipitation reduction over continents is more widespread.
The drying in theMediterranean extends further northward and
eastward. A large precipitation reduction is seen over the
Caribbean Sea and parts of North America. The monsoon in
South and East Asia intensifies.

4.3.4 Other results

Higher-resolution simulations for particular time-slices were also
produced.A30-year time-slice experiment over the periods 1961–
1990 and 2071–2100 for theA1B scenariowas carried out at DMI
at an enhanced horizontal resolution (T159) using their DKCM-A
GCMwith the dynamical core from theARPEGEand the physical
parameterisations from the ECHAM5 model. A multi-decadal
simulation was performed at the University of Reading with a
high-resolution version of the Hadley Centre’s coupled model,
(HiGEM: atmosphere 1° resolution, ocean 1/3°). A version of the
model with even higher resolution in the atmosphere (NUGEM,
0.6°) has been developed on the Earth simulator. The results have
confirmed that resolution in both the atmosphere and the ocean is
important for capturing important phenomena such as El Niño.

The results of the Stream 1 simulations were provided to the
CMIP3 database at PCMDI, and their analyses in a large number
of diagnostic sub-projects provided an essential contribution to the
IPCC Fourth Assessment reports, in particular to the Working
Group IReport entitled ‘ThePhysical ScienceBasis’(IPCC, 2007).

The models and simulations have been presented in a number of
publications by the differentmodelling groups:METO-HC (Johns
et al., 2006; Martin et al., 2006; Ringer et al., 2006; Stott et al.,
2006), MPIMET (Brasseur and Roeckner, 2005; Roeckner et al.,
2006;Hagemann et al., 2009), DMI (May, 2008), IPSL(Dufresne
et al., 2005), FUB (Huebener et al., 2006), CNRM (Salas yMélia
et al., 2005). The Stream 1 simulations have also been analysed
with regard to different research topics: Sea-ice cover (Arzel et al.,
2006;McLaren et al., 2006), radiation budget at high northern lati-
tudes (Sorteberg et al., 2007), evolution of the Arctic freshwater
balance (Guemas and Salas-Mélia, 2008a, 2008b), ENSO tele-
connections (Müller andRoeckner, 2006, 2008; Joly andVoldoire,
2009), influence of Eurasian snow cover on Indian monsoon
(Peings andDouville, 2009), storm tracks (Bengtsson et al., 2006),
response of precipitation over land (Douville, 2006;Douville et al.,
2006), precipitation trend analysis (Good and Lowe, 2006),
extreme events (Chauvin and Denvil, 2007; Sillmann and
Roeckner, 2008; Royer et al., 2008), carbon cycle and sulphate
aerosol effects and feedbacks (Brasseur and Roeckner, 2005;
Crueger et al., 2007). Further analyses of these simulations are
reported in other sections, especially for RT4 and RT5.

Figure 4.3: The number of models (0=‘none’, 7=‘all’) that simulate a precipitation increase for 2070–2099 in comparison with 1961–1990 for the
SRES A1B scenario in winter (DJF, left) and summer (JJA, right).



4.4 The E1 greenhouse gas emissions
scenario

4.4.1 Introduction

The IPCC SRES (Special Report on Emissions Scenarios)
scenarios (Nakicenovic and Swart, 2000) have been extensively
used for climate and impacts modelling. These scenarios,
however, do not include climate policy. Recently, attention has
focused on scenarios that aim to reach radiative forcing targets
below 3W/m2 in 2100 (vanVuuren et al., 2007). Such scenarios
would be able to keep global mean temperature increase below
2°C with a probability higher than 50%.A stated aim of the EC
is to keep anthropogenic warming below 2°C by 2100, and the
ENSEMBLES project included the development of a stabilisa-
tion scenario to help investigate this area of climate research.

Method for developing the E1 scenario

For the ENSEMBLESproject, a scenario based on the SRESA1B
scenario but aiming for 2.9W/m2 in 2100 was developed, called
E1 (Lowe et al., 2009). The E1 scenario has an emissions peak
around 2010 and eventually stabilises at 450 ppmCO2-equivalent
in the 22nd century. Low stabilisation targets are mostly reached
via so-called overshoot emission profiles – based on cost consid-
erations (den Elzen and vanVuuren, 2007). The E1 scenario was
developed using the IMAGE 2.4 Integrated Assessment Model,
which simulates in detail the energy system, land use and carbon
cycle (MNP, 2006; van Vuuren et al., 2007). Emissions and the
energy system are described for seventeenworld regions. Land use
is modelled at 0.5 × 0.5 degrees. Emission reduction comes from
changes to the energy system, non-CO2 gases and carbon planta-
tions. The modelling framework determines which emission
reduction options are used on the basis of minimising abatement
costs. An increase in agricultural productivity, slowing down of
deforestation rates, and allowing greater bioenergy productionwas
also included. The E1 scenario starting point was concentra-
tions/forcings whichwere then reverse-engineered for emissions

and forward-modelled to temperatures. This methodology can
help reduce uncertainty from more traditional linear approaches
to scenarios and modelling. This is the same as the methodology
currently being developed by the IPCC for its Fifth Assessment
Report, and the work done in ENSEMBLES should help inform
the work of the IPCC.

In order to meet a 2.9W/m2 target in 2100, CO2 emissions peak
in 2010 and then decline to almost zero by the end of the century
(Figure 4.4). Implementing such large-scale emission reductions
is only likely to occur through a large-scale political consensus.
The largest contribution to reducing radiative forcing comes
from reducing CO2 emission from energy production. This is
mainly reduced through the introduction of carbon capture and
storage (CCS), energy efficiency, and the use of bioenergy.

Information for the climate models

The results of the E1 scenario have been made available for the
climate modelling community. Specifically, information was
forwarded on concentrations of well-mixed greenhouse gases,
gridded information on air pollutants, and land-use maps (both
at 0.5 × 0.5°). Historical reconstructions for cropland
(Ramankutty and Foley, 1999) and pasture from the HYDE
dataset (Klein Goldewijk, 2001) have been used to producemaps
of the proportion of grid-cells covered by cropland and pasture
on a 0.5 × 0.5° global grid until 1992, and harmonised afterwards
with the changes in land-use computed by the IMAGE scenario
in order to ensure consistency between past and future changes.

For ozone and aerosol concentrations (as opposed to precursor
emissions), some additional offline chemical transportmodelling
work has been required to generate the forcing datasets. Ozone
data have been computed at UiO from the Oslo-CTM2 chemical
transport model (Søvde et al., 2008) (horizontal resolution T21;
vertical resolution L60; upper bound at 0.1 hPa) asmonthlymean
global-gridded three-dimensional files for emissions of ozone
depleting substances of the years 1850, 1900, 1950, 1980, 2000,
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Figure 4.4: The CO2 equivalent concentration pathways (based on Kyoto gases) (a) and the emissions and emission reductions (b) in the A1B and
E1 scenarios. The A1B-SRES-marker scenario has been run in ENSEMBLES for consistency with earlier runs. The recent IMAGE A1B implemen-
tation (against which the E1 scenario was developed) has higher emissions, due – among other reasons – to a higher carbon intensity of GDP
(associated with uncertainty in technology development).
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and for the SRES A1B and the E1 scenarios at 2050 and 2100.
Using the gridded emissions of black carbon and precursors of
sulphates from the IMAGE scenarios, the same chemical trans-
port model as used for IPCC (Boucher and Pham, 2002) has been
used to compute the 3-D sulphate aerosol concentration maps.

4.4.2 Models for Stream 2 simulations

Stream 2 simulations make use of improved coupled atmosphere
ocean models, as developed in Work Package 1.1 of RT1. A
major difference consists in the coupling of an interactive carbon
cycle in five Earth systemmodels (Table 4.3), so that the net CO2

fluxes between atmosphere and ocean, and atmosphere and
land can be computed interactively, depending on the prescribed
atmospheric CO2 concentrations, as proposed by Hibbard et al.
(2007). The carbon cycle model components generally describe
the carbon storage in different pools related to vegetation and
soils, and the carbon uptake and cycling in the oceans.

Eight of themodels can be forced with land cover changes. Land
cover changes influence the physical properties of land surfaces,
and imply carbon emissions in models including land carbon
pools for vegetation and soils, e.g. when deforestation takes
place. Aerosol and/or chemistry models were introduced in
three models. Further improvements concerning details of the
model formulations have also been included, so that the new set
of Earth system models represents a considerable step forward
towards future models with prognostic treatment of all major
greenhouse gases. Several models used here represent prototypes
of Earth systemmodels that will be used for CMIP5 simulations,
in support of the Fifth Assessment Report of IPCC.

4.4.3 Results of the Stream 2 simulations

In total, eight modelling groups have used ten different models
to construct the stream 2 simulations. The participating models
are generally improved or extended versions of models
contributing to IPCCAR4 (through improvements to core phys-
ical schemes, and the inclusion or improvement of aerosol,

carbon cycle and variable vegetation cover components). The
Earth system models including the carbon cycle have been
driven by CO2 concentrations rather than emissions, following
an approach similar to that suggested by Hibbard et al. (2007)
for the AR5. The key features of the different models and the
simulations performed are listed in Table 4.3.

All GCMs in the study, initialised for pre-industrial conditions
(approx. 1860), have simulated climate change driven up to the
present day, with 19th and 20th century reconstructed climate
forcings and 21st century forcings extending up to at least 2100
for two core scenarios –A1B and E1. In manymodels, land-use
change due to human activity is included, although this could not
be done with every model, due to the technical challenge of
representing it in GCMs that include carbon cycle components.
Some simulations additionally include natural (solar and
volcanic) forcings, as previously modelled in Stream 1.

Taken collectively, the models are able to reproduce rather real-
istically the observed warming trend over the 20th century
(Figure 4.5).

Table 4.3: ENSEMBLES Stream 2 multi-model ensemble summary (CC = carbon cycle component; AT = aerosol chemical transport component;
LU = transient land-use change component) and core simulations (CTL = pre-industrial forcing control; GA = historical forcing by GHGs, aerosols,
and land-use changes if represented; +SV = plus solar and volcanic forcing; A1B and E1 = future forcing scenarios for SRES A1B baseline and
ENSEMBLES low-stabilisation cases). • = model component included and simulation (or multiple simulations indicated by a number) performed.

Figure 4.5: Anomalies of the globally averaged annual mean near-
surface temperature over the period 1861–2000 with respect to the
period 1861–1890 for the twelve hindcasts in GA. The solid black
curve indicates the multi-model mean values (giving equal weight to
the different models) and the dashed black curve the observational
values (HadCRUT3). The numbers indicate the different models/simu-
lations from the different modelling groups. Units are °C.



Figure 4.5 shows time-series of the anomalies of the globally
averaged annual mean near-surface temperature over the
period 1861–2000 based on the twelve hindcasts in GA
provided by the different modelling groups. In those cases,
where ensembles of simulations are available, the ensemble
mean values are shown. In accordance with observations,
most models show a marked warming over the last 30 years of
the 20th century, although in one of the hindcasts the marked
warming does not start before the mid-1980s. When the solar
and volcanic forcing is also considered (in GA+SV), the hind-
casts are able to capture the observed cooling in the 1880s and
give a slightly weaker warming in the last 40 years of the 20th
century, compared with the hindcasts considering the green-
house gas forcing only.

Over the 21st century, all models simulate a similar global
mean surface temperature warming for the E1 scenario and the
A1B scenario until the middle of this century. After that the
projections for the A1B scenario are higher than for the E1
scenario because the temperature stays almost constant for the
E1 scenario for the remainder of the century. In four models
(CNRM, ECHAM5, EGMAM, INGV) the temperature increase
for the year 2100, with respect to the 1970-1999 average, is
lower than 2°C. For the IPSLand the HadGEM-AOmodels, the
temperature rise is above 2°C, but below 3°C. The ensemble
mean stays below 2°C (see Figure 4.6). The precipitation
changes at the end of this century are smaller in the E1 scenario
than in theA1B scenario, while in the middle of this century no
difference can be detected (Figure 4.7) The geographical distri-

bution of the precipitation response is broadly similar to the
pattern obtained in the Stream 1 simulations (see Appendix 1).

The second key part of the experimental design was for the
subset of models that include the carbon cycle to diagnose the
net flux of carbon into the atmosphere needed to achieve the
prescribed target concentration profiles.

4.4.4 Diagnoses of carbon fluxes

The implied anthropogenic carbon emissions in the ENSEM-
BLES Stream 2 experiment from four different global models
that include an interactive carbon cycle is illustrated in Figure
4.8 for the historical industrial period andA1B and E1 scenarios.
The experimental design dictates that the models are driven with
atmospheric greenhouse gas concentrations (specifically CO2),
rather than emissions. The concentrations profile is thus a
controlled variable – i.e., the same for all model simulations of
a given scenario – and global mean anthropogenic permitted
emissions consistent with those which can be diagnosed as a
residual term from the difference between the imposed rate of
change of atmospheric CO2 (shown as the black curves in Figure
4.8) and the modelled net sinks (sum of air-to-ocean plus air-to-
land surface carbon fluxes – not shown).

To reduce interannual noise, an 11-year mean smoothing was
applied to each model’s implied emissions (and to the atmos-
pheric CO2 change, for consistency). In one case (MPI:
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Figure 4.6: The global annual mean surface air temperature in 20C3M, A1B and E1 for the Stream 2 simulations (deviation from 1861–1890
mean). For 20C3M and A1B only, the average and range (minimum and maximum of all models for each year) of the simulations are displayed,
and for E1 the individual model runs (as identified in Table 4.3).
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ECHAM5-C) the results shown also represent an ensemble
mean of five simulations for each scenario, which further
reduces the noise. Considerable (unforced) variability nonethe-
less exists in the implied emissions, particularly in the case of
METO-HC model results.

For the 20C3M simulation there is a generally consistent behav-
iour across themodel ensemble – a rising trendwith anthropogenic
emissions reaching between 6 and 9GtC/yr in 2000 – reasonably
consistent with the consensus estimate of around 8 GtC/yr (see,
e.g., Fig. SPM-3 of Nakicenovic and Swart, 2000). All models
agree that the combined carbon sinks remove about half of the net
anthropogenic emissions from the atmosphere at 2000.

In the future projections there is a much greater spread within
the model ensemble. Remarkably, two models (IPSL andMPI)
agree consistently not just in the historical period but also
throughout both theA1B and E1 scenarios, despite differences
in model formulation (for instance, one includes land-use carbon
emissions explicitly while the other does not). This suggests that
the representation of the carbon cycle response in terms of net
sinks is very similar in these models. There is some overlap
between the multi-model ensemble implied emissions forA1B
and E1 in the early 21st century, but a clear separation occurs by
2030. A pattern emerges in which the two consistent models
(IPSLandMPI) predict the largest net sinks and hence imply the
highest permitted anthropogenic emissions (peaking at around
17 GtC/yr in 2050 and falling to ~12 GtC/yr in 2100 forA1B),
while theMETO-HCmodel implies the lowest permitted emis-

sions (only ~10 GtC/yr in 2050, falling to ~8 GtC/yr in 2100 for
A1B), with the INGVCE model falling somewhere in between
(closer to METO-HC). The same model ordering is seen in the
E1 scenario results, but in this case the range of permitted emis-
sions at 2050 is from +4 GtC/yr to near zero in the case of the
METO-HC model, in which the net carbon uptake by the land
and ocean reduces considerably as the atmospheric carbon
dioxide concentration stabilises. A key result is that all models
imply that by 2100 permitted anthropogenic emissions must fall
close to zero, or even become slightly negative, to achieve the
E1 scenario concentrations pathway (see Figure 4.8, top panel).

The magnitude of the land carbon source/sink term covers a
considerable range, and most models also exhibit considerable
interannual to decadal variability in that term (Figure 4.8, middle
panel). However, the ocean shows a more consistent and
smoother behaviour, remaining consistently a carbon sink in both
scenarios across all models (Figure 4.8, bottom panel). One
conclusion arising from the large decadal variability in model
carbon sinks is that, assuming this is a realistic characteristic of
the real climate system, forcing models with specified observed
CO2 concentrations may in fact impose an undesirable partly
non-anthropogenic forcing (e.g., the dip in implied anthro-
pogenic emissions which emerges as a common signal in this
experiment around 1940 may simply reflect a natural variation
in the real land carbon sink rather than be interpreted as a reduc-
tion in actual anthropogenic emissions). We therefore suggest
that the experimental design – although a step forward – could
still be improved.

Figure 4.7: The global annual mean precipitation in 20C3M, A1B and E1 for the Stream 2 simulations (deviation from 1861–1890 mean). For
20C3M and A1B only, the average and range (minimum and maximum of all models for each year) of the simulations are displayed, and for E1 the
individual model runs (as identified in Table 4.3).



4.5 Databases of global model results

The aimwas to develop a database system in a common format,
allowing easy access by all the partners to selected results of the
global ensemble simulations. Typically, an atmosphere–ocean
coupled simulation can generate about half a terabyte of data for
a 100-year simulation if daily fields are stored.Asimilar amount
is found in ensemble seasonal simulations. Themodel results are
stored in the MARS storage system of ECMWF, and of the
Climate and Environmental Retrieval and Archive (CERA)
database system at theWorld Data Centre for Climate hosted by
the Model and Data Group in Hamburg (MPIMET-MD).
Common lists of variables and the need for a common format
were outlined in the early stages of the project, depending on the
requirements of the scientific community taking part in the
other Research Themes. Project data will still be updated and
available online after the project has ended.

ECMWF public data server

A large set of atmosphere and ocean variables from the multi-
model, stochastic physics and perturbed parameter experiments
s2d (seasonal to decadal) integrations are centrally stored at
ECMWF for quality control, basic forecast quality assessment, and
dissemination. The atmospheric variables are archived on
ECMWF’s Meteorological Archival and Retrieval System
(MARS) in GRIB (gridded binary) format. The fields are stored
following a set of atmospheric conventions, based on the experi-
ence gained in DEMETER (Palmer et al., 2004) and the
operational European multi-model seasonal forecasts. The
encoding of the ocean variables is carried out using rules based
on newly developed conventions, with storage of CF-compliant
NetCDF files into the ECFS server.

A subset of the data is being publicly disseminated. The list of
atmospheric variables includes daily data for temperature, wind,
humidity and geopotential at four pressure levels and a selection
of themost common surface data and fluxes.Monthlymean data
are also available. The ocean output includes monthly means of
the ocean analyses and forecasts. They comprise 3-D fields
(temperature, salinity and velocity) and a limited number of 2-D
fields (e.g., sea level,mixed layer depth, 20°C isothermdepth). For
a full list of atmospheric and oceanic variables see: http://
www.ecmwf.int/research/EU_projects/ENSEMBLES/data/comm
on_variables.html.

The ENSEMBLES s2d data have been made available over the
internetwithout charge for use in research, education and commer-
cial work. Two dissemination systems, one based onMARS and
another one based on theOpen-source Project for aNetworkData
Access Protocol (OPeNDAP), have been developed to help users
to access the ENSEMBLESdata in themost efficientway for their
specific requirements.

TheMARS-based system uses the technology developed for the
ECMWF public data server and offers a quick and easy way to
interactively download the data from a user-friendly front page.
From that page the user can retrieve daily andmonthlymean data
in both GRIB and NetCDF formats, as well as plot the required
fields. This system is expected to be of use to scientists interested
in relatively small samples or needing interactive access to the
dataset.
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Figure 4.8: Implied (‘permitted’) anthropogenic net carbon dioxide
emissions to the atmosphere (Gt C/yr) in ENSEMBLES RT2A Stream
2 runs for the 20th and 21st century (top panel) as diagnosed from the
imposed change in atmospheric concentrations (black curves) and the
modelled net carbon flux exchange between the atmosphere and the
land surface (middle panel) and ocean (bottom panel). Note that an
11-year mean smoothing has been applied to all curves (including
delta-concentrations) and that MPI+DMI: ECHAM5-C results show
ensemble means of eight (20C3M+A1B) and five (E1) independent
simulations, tending to smooth those results compared with other
models.
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The OPeNDAP-based tool allows remote application clients to
access the ENSEMBLES dataset. This is a powerful tool to
provide automatic access to clients for a variety of tasks. The
OPeNDAPserves data in bothASCII andCF-compliant NetCDF
formats. TheNetCDF format used in theOPeNDAPsystem is one
of the main novelties of this service: it provides product stan-
dardisation through a new set of encoding rules formulti-forecast
system ensemble simulations (Doblas-Reyes et al., 2007).

CERA database at MPI

MPIMET.MD has established a website to enable easy access to
the ENSEMBLES-related multi-decadal simulations. After
providing the necessary information to the data-providing centres,
metadata formost experiments have been completed. Thewebsite
is continually kept up-to-date to include in theCERAdatabase the
datasets provided by the modelling groups.

ENSEMBLES data are archived in the Climate and Environ-
mental Retrieval andArchive (CERA) of theWorld Data Center
System for Climate (WDCC) run by the Model and Data group.
Access is given by http://ensembles.wdc-climate.de. The web
page provides links to ENSEMBLESRT2Aand the CERAdata-
base, and asks users to read and take note of the ENSEMBLES
Data Policy document before using the data. The experiments for
Stream 1 and Stream 2 are briefly described and access is given
to each scenario variable of each contributing institute.

Alternatively, the CERAdatabasemay be browsed directly using
the CERA portal (http://cera-www.dkrz.de/WDCC/ ui/Browse-
Experiments.jsp), which is subdivided into three frames: which if
ENSEMBLES is selected in the upper right-hand frame, the
lower frame then displays all the ENSEMBLES experiments
according tomodel, scenario and time interval. The list of exper-
iments may further be reduced by selecting a key-word from the
upper-left frame. Finally, after the selection of an experiment, the
buttons below the lower frame give further information about a
particular experiment and lead to the entries (variables). The
database covers about 300 ENSEMBLES experiments (where
experiment means a single multi-decadal simulation performed

with one of the contributingmodels), of which 160 are for Stream
1. Overall there are more than 25,000 entries (an entry is defined
as a two-dimensional field for a variable at a given vertical level).
By mid-2009, about 140 visitors had accessed 55,000 CERA
entries and downloaded around 17 terabytes of information;
demonstrating a lively interest in ENSEMBLES data. First-time
users should look at http://cera-www.dkrz.de/CERA/ for more
information on CERAand instructions for setting up an account.

4.6 Conclusions and perspectives

The first phase (Stream 1) of ENSEMBLES has provided an
important contribution to the Intergovernmental Panel onClimate
Change (IPCC) FourthAssessment Report (AR4) by providing
coordinated European climate model simulations corresponding
to the IPCCSRESA1B,A2 andB1 emissions scenarios. The next
phase (Stream 2) of ENSEMBLES has provided the first oppor-
tunity to test simulations with a new set of improved climate
models, including somewith integrated carbon cycle components
or aerosol transport, using two future scenarios specified in
terms of global greenhouse gas (GHG) concentration pathways.
Two pathways considered are a baseline without climate miti-
gation policy (SRESA1B) and an aggressivemitigation pathway
which aims eventually to stabilise the additional anthropogenic
radiative forcing to that equivalent to a carbon dioxide concen-
tration (CO2-e) at around 450 ppm during the 22nd century. The
results for this second scenario have shown that the simulations
for this stabilisation scenario were generally able to match the
EuropeanUnion target of keeping global anthropogenic warming
below 2°C above pre-industrial levels. It is expected that the high-
time-resolution results permanently stored in the CERAdatabase
will be used beyond the end of the project for further analyses of
the climate response and the resulting impacts. As some other
modelling groups have already expressed their interest in
performing the ENSEMBLES RT2AStream 2 simulations, the
forcing fields necessary for running the scenarios have been put
on the RT2Aweb server in a directory that is publicly accessible:
http://www.cnrm.meteo.fr/ensembles/public/model_simula-
tion.html.

References
ENSEMBLES publications are highlighted as bold text.

ArzelO, FichefetT,GoosseH, 2006. Sea ice evolution over the
20th and 21st centuries as simulated by currentAOGCMs.
OceanModelling 12, 412–427.

BengtssonL,HodgesKI, RoecknerE, 2006. Storm tracks and
climate change. Journal of Climate 19, 3518–3543.

Boucher O, Pham M, 2002. History of sulfate aerosol radiative
forcings. Geophysical Research Letters 29, 1308.

BrasseurGP,RoecknerE, 2005. Impact of improved air qual-
ity on the future evolution of climate. Geophysical Research
Letters 32, L23704, doi:10.1029/2005GL023902.

Chauvin F, Denvil S, 2007. Changes in severe indices as simu-
lated by two French coupled global climate models. Global
and Planetary Change 57, 96–117.

CruegerT, RoecknerE, RaddatzT, SchnurR,Wetzel P, 2007.
Oceandynamics determine the response of oceanicCO2up-
take to climate change. Climate Dynamics 31, 151–168.

denElzenMGJ, vanVuurenDP, 2007. Peaking profiles for achiev-
ing long-term temperature targets withmore likelihood at lower
costs. Proceedings of the National Academy of Sciences of the
USA104, 17931–17936.

Doblas-Reyes FJ,ValienteC, FuentesM, 2007. ENSEMBLES
public data dissemination. ECMWFNewsletter 113, 4.

Douville H, 2006. Detection-attribution of global warming at
the regional scale: how to deal with precipitation variabil-
ity? Geophysical Research Letters 33, L02701,
doi:10.1029/2005GL024967.

DouvilleH, Salas-MéliaD,Tyteca S, 2006.On the tropical ori-
gin of uncertainties in the global land precipitation response
to global warming. Climate Dynamics 26, 367–385.

Dufresne J-L,Quaas J,BoucherO,Denvil S, FairheadL, 2005.
Contrasts in the effects on climate of anthropogenic sulfate
aerosols between the 20th and the 21st century.Geophysical
Research Letters 32, L21703, doi:10.1029/2005GL023619.

GoodP, Lowe JA, 2006. Emergent behaviour and uncertainty
inmulti-model climate projections of precipitation trends at



small spatial scales. Journal of Climate 19, 5554–5569.
Guemas V, Salas-Mélia D, 2008a. Simulation of the Atlantic
meridional overturning circulation in anatmosphere–ocean
global coupled model. Part I. Amechanism governing the
variability of ocean convection inapreindustrial experiment.
Climate Dynamics 31, 29–48.

Guemas V, Salas-Mélia D, 2008b. Simulation of the Atlantic
meridional overturning circulation in anatmosphere–ocean
global coupled model. Part II. Weakening in a climate
change experiment: a feedback mechanism. Climate Dy-
namics 30, 831–844.

Hagemann S, Göttel H, JacobD, Lorenz P, RoecknerE, 2009.
Improved regional scale processes reflected in projected hy-
drological changes over largeEuropeancatchments.Climate
Dynamics 32, 767–781.

Hibbard KA,Meehl GA, Cox PM, Friedlingstein P, 2007.Astrat-
egy for climate change stabilization experiments. EOSTransac-
tions of theAmerican Geophysical Union 88(20), 217–221.

HuebenerH,CubaschU, LangematzU, SpangehlT, Niehoer-
ster F, Fast I, KunzeM, 2006. Ensemble climate simulations
usinga fully coupledocean–troposphere–stratosphereGCM.
PhilosophicalTransactions of theRoyal SocietyA, 365, 2089–
2101.

IPCC, 2007. Climate Change 2007: The Physical Science Basis.
Contribution ofWorking Group I to the FourthAssessment Re-
port of the Intergovernmental Panel on Climate Change (S
Solomon,DQin,MManning, eds).CambridgeUniversity Press,
Cambridge UK and NewYork, 996 pp.

JohnsTC,DurmanCF,BanksHT,RobertsMJ,McLarenAJ,
Ridley JK, Senior CA,Williams KD, JonesA, Rickard GJ,
CusackS, IngramWJ,CrucifixM,SextonDMH,JoshiMM,
Dong B-W, Spencer H, Hill RSR, Gregory JM, Keen AB,
PardaensAK, Lowe JA, Bodas-SalcedoA, Stark S, SearlY,
2006.TheNewHadleyCentreClimateModel (HadGEM1):
evaluation of coupled simulations. Journal of Climate 19,
1327–1353.

Joly M, Voldoire A, 2009. Influence of ENSO on the West
African monsoon: temporal aspects and atmospheric
processes. Journal of Climate 22, 3193–3210.

KleinGoldewijkK, 2001. Estimating global land use change over
the past 300 years: theHYDEdatabase.GlobalBiogeochemical
Cycles 15, 417–433.

Lowe JA, Hewitt CD, van Vuuren DP, Johns TC, Stehfest E,
Royer J-F, van der Linden PJ, 2009. New study for climate
modeling, analyses, and scenarios. EOSTransactions of the
AmericanGeophysical Union 90, 181–182.

MartinGM,RingerMA, PopeVD, JonesA, DeardenC, Hin-
ton TJ, 2006. The physical properties of the atmosphere in
the new Hadley Centre Global Environmental Model
(HadGEM1). Part I.Model description andglobal climatol-
ogy. Journal of Climate 19, 1274–1301.

MayW, 2008. Climatic changes associatedwith a global ‘2°C-
stabilization’scenario simulatedby theECHAM5/MPI-OM
coupled climatemodel. Climate Dynamics 31, 283–313.

McLarenAJ,BanksHT,DurmanCF,Gregory JM, JohnsTC,
KeenAB, Ridley JK, Roberts MJ, LipscombWH, Connol-
leyWM, Laxon SW, 2006. Evaluation of the sea ice simula-
tion in a new coupled atmosphere–ocean climate model
(HadGEM1). Journal ofGeophysicalResearch111,C12014.

MNP, 2006. Integrated Modelling of Global Environmental
Change: An Overview of IMAGE 2.4. Netherlands Environ-
mentalAssessmentAgency, Bilthoven, The Netherlands.

MüllerWA, Roeckner E, 2006. ENSO impact onmid-latitude
circulation patterns in future climate change projections,
Geophysical Research Letters 33, L05711,
doi:10.1029/2005GL025032.

MüllerWA, Roeckner E, 2008. ENSO teleconnections in pro-
jections of future climate in ECHAM5/MPI-OM. Climate
Dynamics 31, 533–549.

NakicenovicN, Swart R (eds), 2000. Special Report onEmissions
Scenarios. Intergovernmental Panel on Climate Change, Cam-
bridge University Press, Cambridge, UK.

PalmerTN,et al., 2004.DevelopmentofaEuropeanmulti-modelen-
semble system for seasonal-to-interannual prediction (DEME-
TER).Bulletinof theAmericanMeteorologicalSoc. 85, 853–872.

Peings Y, Douville H, 2009. Influence of the Eurasian snow
coveron the Indian summermonsoonvariability in observed
climatologies and CMIP3 simulations. Climate Dynamics,
doi:10.1007/s00382-009-0565-0.

Ramankutty N, Foley JA, 1999. Estimating historical changes in
global land cover: croplands from 1700 to 1992. Global Bio-
geochemical Cycles 13, 997–1027.

RingerMA,MartinGM,Greeves CZ,HintonTJ, James PM,
Pope VD, Scaife AA, Stratton RA, Inness PM, Slingo JM,
Yang G-Y, 2006. The physical properties of the atmosphere
in the new Hadley Centre Global Environmental Model
(HadGEM1). Part II.Aspects of variability and regional cli-
mate. Journal of Climate 19, 1302–1326.

Roeckner E, Stier P, Feichter J, Kloster S, Esch M, Fischer-
Bruns I, 2006. Impact of carbonaceous aerosol emissions on
regional climate change. Climate Dynamics 27, 553–571.

Royer J-F, Chauvin F, BiaouA, Schertzer D, Lovejoy S, 2008.
Multifractal analysis of the evolution of simulatedprecipita-
tion over France in a climate scenario. Comptes Rendus
Geoscience 340, 431–440.

Salas yMéliaD,ChauvinF,DéquéM,DouvilleH,GuérémyJF,
Marquet P, PlantonS,RoyerJF,Tyteca S, 2005.Description
and Validation of CNRM-CM3 Global Coupled Model.
CNRMWorking Note 103 [available at: http://www.cnrm
.meteo.fr/scenario2004/paper_cm3.pdf].

Sato M, Hansen JE, McCormick MP, Pollack JB, 1993. Stratos-
pheric aerosol optical depth, 1850–1990. Journal ofGeophysical
Research 98, 22987–22994.

Sillmann J, Roeckner E, 2008. Indices for extreme events in
projections of anthropogenic climate change. Climatic
Change 86, 83–104.

Solanki SK,KrivovaNA, 2003.Can solar variability explain global
warming since 1970? Journal ofGeophysicalResearch 108(A5),
1200, doi:10.1029/2002JA009753.

SortebergA, Kattsov V,Walsh J, Pavlova T, 2007. TheArctic
surface energy budget as simulated with the IPCC AR4
AOGCMs. Climate Dynamics 29, 131–156.

Søvde OA, Gauss M, Smyshlyaev SP, Isaksen ISA, 2008. Evalu-
ation of the chemical transportmodelOsloCTM2with focus on
Arcticwinter ozone depletion. Journal ofGeophysical Research
–Atmosphere 113, D09304.

Stott PA, JonesGS,Lowe JA,ThornePW,DurmanCF, Johns
TC, Thelen J-C, 2006. Transient simulations with the
HadGEM1 climate model: causes of past warming and fu-
ture climate change. Journal of Climate 19, 2763–2782.

vanVuurenDP, den ElzenMGJ, Lucas PL, Eickhout B, Strengers
BJ, van Ruijven B, Wonink S, van Houdt R, 2007. Stabilizing
greenhouse gas concentrations at low levels: an assessment of
reduction strategies and costs. Climatic Change 81, 119–159.

46

4 Production of seasonal to decadal hindcasts and climate change scenarios



47

5.1 Introduction

RT3 was the ENSEMBLES Research Theme responsible for
regional climate modelling research. It provided advances in
regional climate modelling science and had significant
exchanges with the other RTs: the new gridded observations of
RT5 were employed in Regional Climate Model (RCM)
evaluation, RT3 received input from RT2A (GCM data) and
provided input to statistical downscaling, studies on extreme
events, and impact studies in RT2B, RT5 and RT6. In particular,
RT3 provided the regional climate modelling system put into
use in RT2B. Finally, RT3 studies addressed West Africa,
providing added value for theAMMAproject (Redelsperger et
al., 2006).

RT3 had a more extensive agenda than other coordinated
regional climate modelling projects, such as NARCCAP,
CLARIS and RMIP, as well as the earlier European
PRUDENCE project (e.g., Christensen et al., 2007).
Specifically, within ENSEMBLES:
• performance-based weighting of RCMs was considered;
• an extensive set of RCMs was employed with a thoroughly
coordinated experimental design;

• two regions were studied, with different climate
characteristics;

• compared with earlier and other joint RCM studies, the
ENSEMBLES runs were much longer andmade on a higher
resolution (25 km).

The RT3 coordination extended to simulation set-up, evaluation
and systematic exploration of model biases, as well as the
exploration of model weighting, as means for combining results
in a more skilled sense than simple ensemble means and
spreads.

5.2 Coordinating RCM experimentation

5.2.1 Common Regional Climate Model domains

An important facet of the coordination was the definition of
common Regional Climate Model (RCM) domains (Figure
5.1), model resolution and output. The majority of the RCMs
employed a rotated latitude–longitude grid, which allowed for
identical and overlapping grids and subsequent comparison
without the need for interpolation. The RT5 observation-based
grid was defined accordingly (see Section 8).

5.2.2 The RCM simulation streams

There were two RCM simulation streams. The first enabled
model evaluation and work on performance-based RCM
weights for the European region. The period for this was 1958–
2002, with boundary conditions from the observation-based
ERA-40 reanalysis, first on 50 km and then on 25 km
resolution. The second stream included ERA-Interim
reanalysis-driven simulations for the period 1989–2005 over a
domain encompassing the West Africa region at 50 km grid
resolution (see Section 5.3.2).

5.2.3 Common – and extensive – output

Given the anticipated use of RT3 results within RT2B, RT5 and
RT6, as well as in climate impact and extreme event studies
outside ENSEMBLES, coordination included an extensive
dialogue on commonmodel output. The list of output variables
increased due to a wide range of demands. Some of the output
was stored at a sub-daily resolution, successively collected into

5 Formulation of very-high-resolution regional climate model ensembles
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Figure 5.1: The two RCM domains in the ENSEMBLES RT3
simulations.



a joint data archive at DMI. The archive had an OpenDAP
interface for the retrieval of geographical sub-windows, sub-
periods and strides. The archive has been public since January
2009 at http://ensemblesrt3.dmi.dk/, collecting the
ENSEMBLES RCM data from RT3/RT2B (see also Section
6.6). Information on sub-daily extremes of wind maxima and
precipitation intensity allows better estimates of climate impacts
and can be significantly different from those obtained from daily
changes (Lenderink and van Meijgaard, 2008).

5.2.4 Improved regional climate modelling

ENSEMBLES brought various improvements to the state-of-
the-art of regional climate modelling into being. The
coordination mentioned above was one such important
development, along with the increase in model resolution from
earlier ~50 km to 25 km. The latter had, of course, been
attempted earlier, but more as an exception than common
practice. Consequently, many groups had the opportunity to test
how their models fared with increasing resolution. Indeed, high
resolution is one key advantage of RCMs compared with
GCMs, especially in regions with variable land forms or
characteristics (see Figure 5.2).

Comparison of lower and higher resolution RCM runs showed
that a move to higher resolution can require some model
refinements. Although, in general, the simulations improved
with higher resolution, somemodel biases nevertheless became
larger in certain regions and seasons (see, e.g., Jaeger et al.,
2008; Rauscher et al., 2009). For example, at higher resolution
almost all of the ENSEMBLES RCMs tended to simulate more
precipitation (Rauscher et al., 2009), which over some regions
resulted in an increased wet bias. However, the results also show
that higher resolution leads to a general improvement in the
simulation of precipitation extremes.Moving one step further to
cloud-resolving scales of ~2 km and applying an explicit
treatment of convection can substantially improve the timing of

convective precipitation and the simulation of land–atmosphere
feedbacks (Hohenegger et al., 2008, 2009). The ENSEMBLES
experiments, however, clearly indicated that the increase in
model resolution needs to be approached carefully.

Another major advance in regional modelling produced by
ENSEMBLES was the completion of century-long RCM
simulations (as part of RT2B; see Jacob et al., 2009) using a
system provided by RT3. Such simulations were extremely rare
before ENSEMBLES. This unprecedented dataset of transient
runs allows analyses of trends and regime shifts simulated by
the RCMs, with important implications for regional-scale
detection, attribution, impact and adaptation work for Europe.

Some examples of the specific evaluations and improvements
explored include a detailed comparison of the regional-scale
components of the water budget in the Baltic Sea drainage basin
for one of the RCMs (Lind andKjellström, 2009) and testing the
role of the spectral nudging technique to improve the large-scale
and small-scale skills of an RCM (Radu et al., 2008). The impact
of RCM domain size was also explored (Farda et al., 2009) as
well as the ability to represent extreme temperature events
(Kostopoulou et al., 2009). The capacity of the ERA40-driven
RCM simulations to follow the large scales of their driving
models was assessed by Sanchez-Gomez et al. (2009a), and the
RCMs’ capacity to simulate the heat and water budget of the
Mediterranean Sea is reported by Sanchez-Gomez et al. (2009b).

Owing to the length of the ERA40-driven evaluation runs and
coordinated experimentation in ENSEMBLES, it became
feasible to conduct extensive exploration of systematic biases in
RCMs. The new ENSEMBLES gridded observational data (see
Section 8) was very useful as a common reference for model
bias studies, including the utilisation of daily data for looking at
extreme events (e.g., Pall et al., 2009).All in all, substantial new
insights were gained on systematic RCMbiases using data from
the ERA40-driven simulations (Christensen et al., 2008). An
example is shown in Figure 5.3.
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Figure 5.2: Annual precipitation over the Alpine region (mm/yr) as simulated at 50 km resolution (top left), 25 km, (top right) and 12 km (bottom
left). Observations adapted from Frei and Schär (1998) are in the bottom right panel.
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Some RCMs have systematic biases, and also a clear tendency
to enhance these in more extremely cold or warm conditions.
Others have no evident systematic bias. Such an analysis of
individual RCM bias characteristics, in principle, allows for
projection of model biases under climate change conditions.

An attempt to use this simple bias information to correct
projections of climate change information was suggested by
Boberg et al. (2009). Figure 5.4 shows how RCM temperature
projections might be corrected using a simple second-order
polynomial fit to the bias depicted in Figure 5.3.

Figure 5.3: RCMs’ bias dependency per temperature (top) and precipitation (bottom) regime, here for a Mediterranean region. Each symbol
represents one month in the period 1961–1990. The curves are second-order polynomial fits.

Figure 5.4: Illustration of a simple monthly mean bias correction for three of the ENSEMBLES RCMs which were run all the way to 2100. Larger
symbols show model results and smaller symbols corrected values for 30-year time-slices.



The most obvious result is the reduction of the warming signal
during summer and the reduced spread of projected changes.
The corrected results are more in agreement than the raw data.
The basis for these kinds of corrections still needs further
investigation. Nevertheless, it is clear that systematic model
biases can result in unwanted uncertainty regarding projected
climate change signals.

5.2.5 Metrics, weighting and RCM ensemble

At the heart of ENSEMBLES was the construction of a
system for probabilistic global and regional climate change
projections. Concerning RCMs, this included exploration of
performance-based model weights that allow the
combination of individual model simulations in a more
skilled sense than just taking each model as being equally
good (or their results as equally likely) and providing
arithmetic model averages and simple model spreads.

Past experience with RCMs has shown that no single model
is best for all climate variables and statistics (Christensen
and Christensen, 2007; Jacob et al., 2007). Thus, multi-
model information has value, which can be enhanced with a
performance-based weighting of the contributing models.
Work along these lines for GCMs was conducted within
ENSEMBLES (see Section 3). For RCMs, an exploratory set
of metrics for a derivation of RCM weights was designed
using the 25 km ERA40-driven RCM simulations and the
RT5 gridded observations (Haylock et al., 2008). Given the
preliminary nature of the methodology, different ways of
combining the metrics were explored in order to study the
robustness of the methodology. Indeed, there is a
considerable degree of subjectivity regarding both the choice
of metrics and how they are combined into weights. This
does not mean that weighting, however exploratory, would
be without meaning. Rather, it stresses that the underlying
assumptions and choices need to be recognised and taken
into account.

The evaluation metrics were selected to specifically target
aspects of RCM performance relevant to their added value in
producing climate change projections. These included large-
scale regimes and meso-scale climate features, variability,
extremes, trends and the seasonal cycle (Kjellström et al.,
2009):
f1: Large-scale circulation and weather regimes
f2: Temperature and precipitation meso-scale signal
f3: PDFs of daily precipitation and temperature (Sanchez et

al., 2009)
f4: Temperature and precipitation extremes
f5: Temperature trends
f6: Temperature and precipitation annual cycle.

The last five of these metrics were defined for both the full
European continent and some of its sub-regions, and on both
an annual and a seasonal basis. The general philosophy
behind combining the metrics into weights is that a ‘good’
model should perform well in all metrics considered. This
helps to avoid the counterbalancing effects of systematic
biases affecting some, but not all, of the considered
measures.

Combined metrics

All the individual metrics have a value between 0 and 1. A
straightforward method for combining them is multiplication,
i.e.:

If some metrics are to be considered more relevant than others,
or if some of the metrics have an overlap of some kind, the
exponents in the equation above can be varied. Note that a value
of 0 for the exponent implies equal weighting of the RCMs and,
in essence, that information carried by the metrics is not used.
A value of 1 for the exponent implies that each metric is
considered equally important. Given the exploratory nature of
these studies, it is important to study how such choices affect the
result (see Figure 5.5).

‘Normalisation’ obtained by constraining the ratio between the
highest and lowest assigned weight is an additional option.
Formally, this can be established by taking a value of ni different
from 1. Yet another method is to rank all models according to
their order of performance in terms of each of the metrics, sum
these ranks, and then transform this rank sum into a model
weight which is obtained by dividing the sum of the rank sums
by the rank sum of each model and then normalising it so the
total sum of weights is equal to 1.

These efforts were an important step in quantifying RCM
behaviour. However, due to the exploratory nature of these
metrics, and how they were combined, these weights are not
sufficient to identify ‘good’ or ‘bad’ models. Furthermore, the
metrics are conditional on the quality of the underlying driving
and observational data, which is an issue in particular for
extremes. Finally, these weights do not necessarily quantify the
quality of the representation of the underlying physics in the
models.

The weighting methodology presented here is a first attempt
(Christensen et al., 2009). We are, however, encouraged by
these results as they seem to have the ability to emphasise both
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Figure 5.5: Straightforward multiplication has the severest
differentiating impact on the RCMs when the performance-based
weights defined here are applied. The other explored methods retain
the same overall order of the RCMs, but with an attenuated variation
within the set.
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similarities and differences in the RCMs’ capabilities. Indeed,
performance-based analysis can bring out both robust and
uncertain aspects and consequently can assist in designing
model development and efforts on observational data.
Subsequently, this can lead to a more knowledge-based use of
regional climate change information in climate impacts analysis
and adaptation efforts.

To summarise, for users who employ time-series to force impact
modelling, choosing a subset of the available RCMs based on the
weights is not necessarily the best strategy. It might lead to an
undersampling of uncertainty. The minimum requirement would
seem to be to use results based on two or more Regional Climate
Models that are forced by at least twoGlobal ClimateModels (see
Christensen and Christensen, 2007). The full GCM-RCMmatrix
should furthermore be used as supporting information on how the
chosen case(s) (GCM-RCM pair[s]) relate to the other cases.

5.2.6 Construction of the RCM climate change
projection matrix

Whereas the RCM climate change projections were part of the
RT2B’s remit, the planning of these was a joint undertaking. One
of themain tasks in RT3was to design an experiment strategy for
use in the regional climate change projection ensemble in RT2B.
In addition to providing the contributing RCMs (see above) and
exploratory weighting options, the work involved a design of the
so-called GCM-RCMmatrix, i.e., the pairing of available GCM
runs and RCMs. (The total possible number of combinations was
considerably larger than what in practice could be
accommodated, due to limited computing resources.)

In order to pursue probabilistic climate change scenarios, asmuch
of the uncertainty as possible should be covered. The RT3/RT2B
subsampling mainly addressed the uncertainty in (1) boundary
conditions (choice of GCM) and (2) RCM model formulation.
Uncertainties in future emissions were not explicitly studied, in
part because the main body of the regional projections was to
extend only up to 2050, a time horizon for which the emission
scenario uncertainty is less relevant. Neither was initial condition
uncertainty sampled. Some groups, however, made available
additional simulations looking into this at a coarser horizontal
resolution. Also, recent work within the ENSEMBLES project
(Kendon et al., 2009; see also Section 6.3.4) has considered the
role of natural variability in explaining RCM differences.

Uncertainty in boundary conditions

Differences between climate projection results from different
GCMs relate to different model resolution, model dynamics and
physical parameterisations, along with scenario assumptions
and, to some degree, initialisation details. As is well known,
ensembles of GCM simulations provide a number of
comparable climate change signals, not least on a large scale.
Even regional climate changes as simulated in global models
are similar in a number of respects. In the case of Europe,
regional differences between GCMs seem to depend to a large
extent on differences in the large-scale circulation response to
global warming (van Ulden and van Oldenborgh, 2006; van
Ulden et al., 2007). Many of these differences are imported to
the RCMs, sometimes leading to large local/regional differences

(Räisänen et al., 2004). Indeed, an important conclusion from
the previous PRUDENCE project was that the uncertainty due
to the boundary conditions (choice of GCM) is generally larger
than the choice of RCM (Déqué et al., 2007), at least for large-
scale seasonal mean changes towards the end of the 21st century
(see also Section 6.2.1).

From a total number of six ENSEMBLES (RT2A) GCMs,
results from those five that were run with a reasonably high
resolution were employed in the RCM climate change
simulation matrix (Table 5.1). As the ENSEMBLES GCMs
projected a smaller range in global mean warming than the
‘IPCCAR4GCMs’(Meehl et al., 2007), also GCM runs within
the METO-HC GCM perturbed physics ensemble were
employed. In particular, a HadCM3 ‘reference’ simulation, one
with low climate sensitivity and one with high climate
sensitivity were employed. These members of HadCM3 are
considered different for the purposes here, as they show very
different climate responses (Collins et al., 2006). Thus, the
number of different global models considered in RT2B was
eight. In addition to those also a Canadian GCM was
downscaled by one of the ENSEMBLES affiliates.

Uncertainty in RCM model formulation

Another main result of the previous PRUDENCE project was
that many local features and aspects of extremes varied with the
choice of RCM (Kjellström et al., 2007). This suggested the
need to explore uncertainty due to regional model formulation,
which in part led to the ENSEMBLES experimentation set-up
(Table 5.1).Also, inasmuch as one particular RCMmay amplify
climate change signals in some GCM, another RCM may
weaken the same. In this sense, RCMs are not readily
interchangeable. Subsampling could thus artificially inflate or
downplay uncertainty.

At the start of ENSEMBLES, most of the RCMs were either
new versions or otherwise untried for the ENSEMBLES set-
up. Thus, there was no a priori information on which models
might amplify or weaken the GCM climate change signals.
Consequently, efforts were spread over the available models to
the degree possible in terms of available computational
resources. (Quite a few additional runs were provided in the
end, adding to the runs stipulated by the project contract.)

Uncertainty in radiative forcing

All the RT2B regional climate projection runs extended over
the period 1951–2050, with many continuing all the way to
2100. The choice of the emission scenario is of less importance
for the early decades of the 21st century than for the later ones.
Consequently, one emission scenario was chosen for use in the
runs, so as to be in a better position to explore uncertainties due
to the choice of boundary conditions (i.e., the GCM) andmodel
formulation (i.e., the RCM).After joint considerations with RT1
and RT6, the SRESA1B scenario was chosen.

Uncertainty due to initial conditions

As concluded in the PRUDENCE project, the uncertainty due
to initial conditions is of less importance than the other
uncertainties (Déqué et al., 2007) towards the end of the 21st



century. However, this uncertainty is relatively larger in the first
few decades, as the climate change signal is not large for this
period of time (Kjellström et al., 2009). Also, higher-order
variability may bemore sensitive to the choice of sampling than
changes in seasonal and annual averages, as shown for
interannual variability. Kendon et al. (2008) have shown that
internal variability significantly affects our ability to measure
robust signals of extreme precipitation change, withmulti-annual
variability contributing significantly to the overall uncertainty.

The resulting GCM-RCM matrix

The final GCM-RCMmatrix is shown in Table 5.1. These runs
provided input for regional climate change and impact analyses
in RT2B and RT6. The matrix is foreseen to leave a legacy after
ENSEMBLES, such as prompting further additional
simulations to add to the ensemble.

Inflating the matrix

Although this GCM-RCMmatrix was large and better populated
than what had been achieved in other projects, such as
PRUDENCE, it still has many empty cells. To ‘fill in the blanks’
requires an estimation of the GCM-RCM pairs’ climate change
signals that have not been explicitly run. For this, both a pattern-
scaling approach and a method based on the analysis of variance
(ANOVA) were used in the joint RT3/RT2B work. The local
pattern-scaling approach is outlined in Section 6.3.4. Here we
only note briefly that local scaling using the large-scale change in
the GCM as a predictor of the local-scale climate response in the

RCM was found to have some skill in estimating local changes
for different driving GCMs and hence for filling the matrix.

In Déqué et al. (2007) the missing cells in the PRUDENCE
matrix were filled in with a method based on ANOVA. This
method has been refined within ENSEMBLES (Déqué et al.,
2009) based on weather regime decomposition (see Vautard,
1990). Thus the method now also accounts for the GCM
providing large-scale forcing on the RCM. A clustering of the
daily 500 hPa height values over the North Atlantic–Europe
domain leads to large-scale patterns that can be linked to
weather in Europe (Robertson and Ghil, 1999); the most
commonly studied being the positive and negative phases of the
North Atlantic Oscillation. Here, clustering in four regimes,
such as in Michelangeli et al. (1995), is applied.

The method assumes that the way the RCM behaves under a
given regime only depends on the RCM. Thematrix completion
was tested by removing an RCM-GCM pair and comparing its
reconstruction with the original response. This could be done
only for the RCMs that were run with two GCMs. For these
runs the reconstructed results showed reasonable skill for
temperature, but demonstrated only little skill for precipitation.
Table 5.2 shows the RCM-based winter (DJF) temperature
changes averaged over Europe. The results reconstructed as
described above are shaded. It is worth mentioning that the
reconstructed responses may be well outside the range of the
explicitly simulated responses. The average of the seventeen
original responses is little changed when considering the full
matrix of 98 responses: on average over Europe, the
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Table 5.1: The ENSEMBLES RCM simulations at 25 km resolution. Those simulations and institutions marked with an asterisk (*) are outside of
the contractual runs. For the METO-HC GCM, there are standard (std), low, and high sensitivity runs.
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temperature response increases by 0.1 K (in winter, but also in
summer). The precipitation response, on the other hand,
decreases by 0.02 mm/day.

The efforts on the RCM-GCM matrix were further extended
into studies on sampling strategies, i.e., how to produce a design
of runs that is as optimal as possible. On one hand, the number
of models to consider and runs to conduct should be as small as
possible in order to reduce the computational demand. On the
other hand, the matrix should be sufficient to provide reasonable
sampling of uncertainties.

Work assessing the optimal design for RCM-GCM
experimental matrices (Kendon et al., 2009) suggests that
priority should be given to sampling different driving GCMs,
whereas a reduced set of RCMs could be enough if the interest
lies in temperature and precipitation changes in the latter half of
the century. TheANOVAresults (Déqué et al., 2009) show that,
for mid-century and 25 km resolution, several RCMs per GCM
are warranted because the way that local ‘weather’ is linked to
a large-scale regime is strongly RCM-dependent.

5.3 Applications

5.3.1 Climate projection based on the ENSEMBLES
Regional Climate Model ensemble

The final RT3 RCM system consisted of the RCMs evaluated in
RT3, the GCM-RCM pairing strategy and the studies on
performance-based weighting. The system was consequently
applied by RT2B to create a set of transient regional climate
change projections for Europe (see Section 6). The ‘present-
day’ part of these simulations that nominally overlaps the RT3
evaluation simulation period (the period 1958–2002) was
studied by both RT2B and RT3.

For example, application of the RT3-derived weights to the
RT2B-runs’ present-day component did not lead to significant
improvements of the multi-model temperature or precipitation
results compared with an unweighted multi-model mean (see
Figure 5.6) when averaged over the entire European region.
Other examples are shown in Section 6.Another result was that
the multi-model GCM-forced RCM runs show less interannual

Table 5.2: RCM-GCM response for DJF temperature (°C) over Europe, by 2021–2050, compared with 1961–1990.

Figure 5.6: Evolution of annual 2 m temperature (°C): RT5 observational dataset (black line), the ERA40-driven RT3 RCM runs (red), the control
period of the RT2B transient climate change projections (green). Solid lines show the equal-weighted multi-model RCM mean. Dashed lines
depict a weighted (using a simple multiplication of the metrics) multi-model mean. The results on the left are for one European region (France)
and the results on the right are for the European land region.



variability than the ERA40-driven runs. In the former, the
simulated interannual variability is different depending on the
driving GCM and tends to average out. In the latter the synoptic
course is the same for all RCMs. The respective warming trend
over the last few decades was, by and large, the same in the
RCM runs and the observations – albeit slightly smaller in the
former (Lorenz and Jacob, in preparation).

For additional applications of the RT3/RT2B RCM runs in
ENSEMBLES impact studies, please refer to Section 9.

5.3.2 Regional Climate Model ensemble
investigation for West Africa

Introduction

RT3 included a study of West African climate (Rummukainen
et al., 2009), leading to a close collaboration with the AMMA
project (Redelsperger et al., 2006). On one hand, regional
climate modelling provided input to the process and impact
studies by AMMA. On the other, AMMA made available
observational data for RCM evaluation. For RT3, the benefit
was that European RCMs could be tested for another climate
regime. The region in question has strong climatic gradients
from the Gulf of Guinea in the south, to the Sahara in the north,
and these are not adequately resolved by present-day GCMs.
Consequently, it was interesting to investigate whether higher-
resolution RCMs could play a role in reducing uncertainties and
hence provide more reliable estimates of future change.

As for the European region, the RCM runs were coordinated,
data archiving was discussed with users, and both evaluation
and climate projection runs were made. The results were
imported to the same RCM data archive at DMI that hosted the
European data. There also were some differences from the
European region RCM set-up: the total number of RCMs and
runs was smaller, the evaluation runs were forced by the so-
called ERA-Interim (rather than ERA-40) data, which also

meant that only the period since 1989 could be covered. The
ERA-Interim dataset was used because it has been shown to
significantly improve the simulation of the hydrological cycle
over tropical regions.

The first streamWestAfrica simulations (see Table 5.3), driven
by the ERA-Interim reanalysis (Uppala et al., 2008), show to
what extent the RCMs differ from one another and also give
insight into the regional dynamics of this region’s climate. The
second stream involved runs at 50 km for 1991–2050, with
forcing according to SRESA1B and three different GCMs.

Analysing ENSEMBLES Regional Climate Model
performance for West Africa

Although independent RCM studies have been undertaken in
the past, the RCM simulations produced by ENSEMBLES for
theWestAfrican domain provide an unprecedented resource for
climate research in this region. These coordinated experiments
allow for an evaluation of model uncertainty in this tropical
region, in a similar manner to what has been undertaken for the
European domain. Not least, intraseasonal and interannual
characteristics of the West African Monsoon (WAM) are of
particular interest, as well as land–atmosphere interactions (van
den Hurk and van Meijgaard, 2009). The results indicate
promising skill in the models’ ability to represent the dominant
spatial features and the seasonal cycle of WAM rainfall. In
Figure 5.7, the mean seasonal evolution of rainfall over the
Guinea Coast and Sahelian zones for five of the RCMs is
compared with observations.

All models distinctly capture the three phases of the monsoon,
but with varying degrees of accuracy in the magnitude and
timing of these phases. For example, the HIRHAM RCM
greatly overestimates rainfall amounts along the coast (~6°N),
but reasonably captures the Sahel rainy season. RCA
represents the coastal rainfall well, but has a premature onset
of the Sahel rainy season.

By the end of the ENSEMBLES project, several studies were
under way. One of these was on land–atmosphere coupling,
focusing on regions and seasons of strong coupling as defined
by significant correlations (1) between soil moisture and
evaporation and (2) between soil moisture and the precipitation
recycling ratio. Areas where both correlations are positive are
shown in Figure 5.8 for one RCM. They are concentrated at the
boundaries of the migrating wet season. A surprisingly small
coherence was found, probably because the atmosphere is often
too dry to generate precipitation, and perhaps also because
alternating dry and wet conditions may promote advection.

In areas with strong land–atmosphere interactions, clear
seasonal cycles of soil moisture and atmospheric humidity
introduce asymmetries. This suggests that phasing of
atmospheric properties plays an important role in land–
atmosphere feedback in most regions of West Africa.

Regional climate change ensemble application

The second stream Regional Climate Model simulations
provided transient projections of future climate change, again
for theA1B scenario and with different GCMboundary forcing.
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Table 5.3: The RT3 RCM simulations for West Africa.
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Figure 5.7: Mean seasonal cycle (pentad composites for 1989–2007) of rainfall over West Africa for the Global Precipitation Climatology Project
(GPCP) and five RCMs driven by ERA-Interim reanalysis.

Figure 5.8: Soil memory (days) per season in areas with positive correlations.



This represents the first comprehensive source of information
for assessing likely regional climate changes overWestAfrica,
and associated uncertainties, which can feed directly into
impacts and adaptation studies (Figure 5.9)

At the time of the writing of this report, the ENSEMBLES
RCM climate change projections for West Africa are under
analysis.

5.3.3 Regional studies facilitated by ENSEMBLES

AMMA (Redelsperger et al. 2006) partners currently use these
RCM simulations for process and impact studies for Western
Africa. Some examples of these studies are:
• Regional evaluation of the seasonal cycle of rainfall for the
2000-2003 period is made by ENEA. The RCMs have so
far been found to show large differences in their ability to
reproduce the onset and retreat of the monsoon on the
Guinean coast and the Sahel zone. Further analysis and in
particular a comparison with the spread of GCMs in their
ability to simulate these characteristics of the monsoon
rainfall is foreseen. The objective is to quantify the added
value of using regional models forced by re-analysis
compared to GCMs for reproducing rain fields.

• The University of Cotonou uses the detailed rainfall
observations obtained during the AMMA field campaign

(2005-2007) over the upper Ouémé site to evaluate the
quality of simulated rainfall. This analysis concentrates on
smaller spatial scales and synoptic variability. One of the
questions to be answered is the ability of RCMs to capture
the main features of the large convective systems which
produce most of the rain in the region.

• 2iE in Ouagadougou and UPCT in Cartagena concentrate
on the regional climate change simulations. They look at
the projected evolution of the dry spells which occur during
the rainy season and how the intra-seasonal characteristics
of the monsoon might evolve in a warmer climate. Also
water resources impact studies are made for the upper Volta
basin (The Nakambé) for estimates of water resources until
2050.

• IPSL examines the potential of RCM simulations to drive
the crop yield models developed within AMMA. This
entails testing the ability of these simulations to reproduce
realistic inter-annual variations of crop yield. Once this is
established then the impact of climate change is examined.
The large number of simulations available will allow to test
the climate related uncertainty and compare it to those
linked to farming practices or market evolutions.

It is expected that other studies will be forthcoming over the
next few years, contributing to the overall outcome and legacy
of the ENSEMBLES project.
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Figure 5.9: An example of ENSEMBLES RCM climate change projections for West Africa (following Rummukainen et al., 2009). From top to
bottom, results for three-month seasons of DJF, MAM, JJA and SON.



5 Formulation of very-high-resolution regional climate model ensembles for Europe

57

References
ENSEMBLES publications are highlighted as bold text.

Boberg F, Christensen JH, Lucas-Picher O, Christensen
OM, 2009. Bias corrected climate change projections over
Europe: exploring an ensemble of regional climate mod-
els. In preparation

Christensen JH, Carter TR, Rummukainen M, Amanatidis G,
2007. Evaluating the performance and utility of regional cli-
mate models: the PRUDENCE project. Climatic Change
81(Supplement 1), 1–6.

Christensen JH, Christensen OB, 2007.Asummary of the PRU-
DENCEmodel projections of changes in European climate by
the end of this century. Climatic Change 81(Supplement 1),
7–30.

Christensen JH, Giorgi F, RummukainenM, 2009.Weight-
ing models based on several RCM-specific metrics: does
it work? Climate Research, to be submitted.

Christensen, H, Boberg F, Christensen OB, Lucas-Picher P,
2008. On the need for bias correction of regional climate
change projections of temperature and precipitation.
Geophysical Research Letters 35, L20709,
doi:10.1029/2008GL035694.

Collins M, Booth BBB, Harris GR,Murphy JM, Sexton DMH,
WebbMJ, 2006. Towards quantifying uncertainty in transient
climate change. Climate Dynamics 27, 127–147.

Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH,
Rockel B, Jacob D, Kjellström E, CastroM, van den Hurk B,
2007.An intercomparison of regional climate simulations for
Europe: assessing uncertainties in model projections. Climatic
Change 81(Supplement 1), 53–70.

DéquéM, Somot S, Sanchez-Gomez E, Goodess CM, Jacob
D, Lenderink G, Christensen OB, 2009. The spread
amongst ENSEMBLES regional scenarios: regional cli-
mate models, driving general circulation models and in-
terannual variability. Climate Dynamics, submitted.

FardaA, DéquéM, Somot S, HoranyiA, SpiridonovV, Toth
H, 2009. TheALADINmodel as a regional climate model
for Central and Eastern Europe. Studia Geophysica et
Geodaetica, submitted.

Frei C, Schär C, 1998. A precipitation climatology of the Alps
from high-resolution rain-gauge observations. International
Journal of Climatology 18, 873–900.

HaylockMR, Hofstra N, Klein TankAMG, Klok EJ, Jones
PD, NewM, 2008.AEuropean daily high-resolution grid-
ded dataset of surface temperature and precipitation.
Journal of Geophysical Research 113, D20119,
doi:10.1029/2008JD10201.

HoheneggerC, Brockhaus P, Bretherton CS, SchärC, 2009.
The soil moisture-precipitation feedback in simulations
with explicit and parameterized convection. Journal of
Climate, in press.

Hohenegger C, Brockhaus P, Schär D, 2008. Towards cli-
mate simulations at cloud-resolving scales. Meteorologis-
che Zeitschrift 17, 383–394.

Jacob D, Bärring L, Christensen OB, Christensen JH, de Cas-
tro M, DéquéM, Giorgi F, Hagemann S, Hirschi M, Jones R,
Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C,
Seneviratne SI, Somot S, van Ulden A, van den Hurk B,
2007.An intercomparison of regional climate models for Eu-
rope: model performance in present-day climate. Climatic
Change 81(Supplement 1), 31–52.

Jacob D, et al., 2009. An ensemble of high resolution re-
gional climate change projections for EUROPE: datasets
for impact research and adaptation strategies. In prepa-
ration

Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Senevi-
ratne S, 2008. Analysis of ERA40-driven CLM simula-
tions for Europe.Meteorologische Zeitschrift 17, 349–367.

Kendon EJ, Jones RG, Kjellström E, Murphy JM, 2009.
Using and designing GCM-RCM ensemble regional cli-
mate projections. Journal of Climate, to be submitted.

Kendon EJ, Rowell DP, Jones RG, Buonomo E, 2008. Ro-
bustness of future changes in local precipitation extremes.
Journal of Climate 21, 4280–4297.

Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär
C, 2007. Modelling daily temperature extremes: recent cli-
mate and future changes over Europe. Climatic Change
81(Supplement 1), 249–265.

Kjellström E, Giorgi F, Rummukainen M, Lenderink G.
2009. Evaluation of an ensemble of regional climatemodel
simulations for the ERA40-period. Climate Research, to
be submitted.

Kostopoulou E., Tolika K, Tegoulias I, Giannakopoulos C,
Somot S, Anagnostopoulou C, Maheras P, 2009. Evalua-
tion of a regional climatemodel using in-situ temperature
observations over the Balkan Peninsula. TellusA61, 357–
370.

Lenderink G, van Meijgaard E, 2008. Increase in hourly
precipitation extremes beyond expectations from tem-
perature changes. Nature Geoscience 1, 511–514.

Lind P, Kjellström E, 2009. Water budget in the Baltic Sea
drainage basin: evaluation of simulated fluxes in a re-
gional climate model. Boreal Environment Research 14,
56–67.

Lorenz P, Jacob D, in preparation. Validation of tempera-
ture trends in the ENSEMBLES RCM runs driven by
ERA40. To be submitted to Climate Research, special
issue on Regional ClimateModel Evaluation andWeight-
ing.

Meehl GA, Stocker TF, CollinsWD, Friedlingstein P, GayeAT,
Gregory JM, KitohA, Knutti R, Murphy JM, NodaA, Raper
SCB, Watterson IG, Weaver AJ, Zhao ZC, 2007. Global cli-
mate projections. In: Climate Change, 2007: The Physical
Science Basis. Contribution ofWorking Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Cli-
mate Change (S Solomon, D Qin, M Manning, Z Chen, M
Marquis, KBAveryt, M Tignor, HLMiller, eds). Cambridge
University Press, Cambridge, UK and NewYork.

Michelangeli P, Vautard R, Legras B, 1995. Weather regimes:
recurrence and quasi stationarity. Journal of Climate 52,
1237–1256.

Pall P, Arnold J, Kotlarski S, Bosshard T, Schär C, 2009.
Evaluation of heavyAlpine precipitation in ENSEMBLES
regional climate models. In preparation.

Radu R, Déqué M, Somot S, 2008. Spectral nudging in a
spectral regional climate model. Tellus A 60, 885–897.

Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP,
Jones C, Meier HEM, Samuelsson P, Willén U, 2004. Euro-
pean climate in the late twenty-first century: regional simu-
lations with two driving global models and two forcing
scenarios. Climate Dynamics 22, 13–31.

Rauscher SA, Coppola E, Piani C, Giorgi, F, 2009. Resolu-
tion effects on regional climate model simulations of sea-



sonal precipitation over Europe. Climate Dynamics,
doi:10.1007/s00382-009-0607-7.

Redelsperger J-L, Thorncroft CD, DiedhiouA, Lebel T, Parker
DJ, Polcher J, 2006. African Monsoon Multidisciplinary
Analysis (AMMA): an international research project and field
campaign. Bulletin of the American Meteorological Society
87, 1739–1746.

RobertsonAW, Ghil M, 1999. Large-scale weather regimes and
local climate over the western United States. Journal of Cli-
mate 12, 1796–1813.

RummukainenM, Giorgi F, the ENSEMBLESRT3 partic-
ipants, 2009. ENSEMBLES regional climatemodel simu-
lations for Western Africa (the ‘AMMA’ region). In:
Second International Lund RCM workshop ‘21st Cen-
tury Challenges in Regional-scale ClimateModelling’, 4–
8 May, 2009: Workshop Proceedings (B Rockel, L
Bärring, M Reckermann, eds). International BALTEX
Secretariat Publication No. 41, 213–214.

Sanchez E, Romera R, Gaertner MA, Gallardo C, Castro
M, 2009.Aweighting proposal for an ensemble of regional
climate models over Europe driven by 1961–2000 ERA40
based on monthly precipitation probability density func-
tions. Atmospheric Science Letters, doi:10.1002/asl.230.

Sanchez-Gomez E, Somot S, Déqué M, 2009a. Ability of an
ensemble of regional climatemodels to reproduce weather

regimes over Europe–Atlantic during the period 1961–
2000. Climate Dynamics 33, 723–736.

Sanchez-Gomez E, Somot S, Elguindi N, Josey S, DéquéM,
2009b. Evaluation of the Mediterranean Sea water and
heat budgets as simulated by an ensemble of high-resolu-
tion regional climate models. Journal of Geophysical Re-
search – Ocean, submitted.

Uppala S, Dee D, Kobayashi S, Berrisford P, SimmonsA, 2008.
Towards a climate adapt assimilation system: status update
of ERA-Interim. ECMWF Newsletter 115, 12–18.

van den Hurk BJJM, vanMeijgaard E, 2009. Diagnosing land–
atmosphere interaction from a regional climate model simu-
lation over West Africa. Journal of Hydrometeorology,
submitted.

van UldenAP, Lenderink G, van den Hurk B, vanMeijgaard E,
2007. Circulation statistics and climate change in Central Eu-
rope: PRUDENCE simulations and observations. Climatic
Change 81(Supplement 1), 179–182.

van Ulden AP, van Oldenborgh GJ, 2006. Large-scale atmos-
pheric circulation biases and changes in global climate model
simulations and their importance for climate change in Cen-
tral Europe.Atmospheric Chemistry and Physics 6, 683–881.

Vautard R, 1990. Multiple weather regimes over the north At-
lantic: analysis of precursors and successors. Journal of Cli-
mate 118, 2056–2081.

58

5 Formulation of very-high-resolution regional climate model ensembles for Europe



59

6.1 Introduction

RT2B provided the regional component of the ENSEMBLES
climate model engine, drawing on the regional modelling
system developed in RT3. The main task for RT2B was to
provide relevant and – if possible – robust information on
regional climate change as input data for climate change
impact assessments, in particular those undertaken in RT6.

The starting point for this work was the PRUDENCE,
STARDEX, MICE and DEMETER projects. As in these
earlier projects, two different downscaling approaches
(dynamical and statistical) were used, but the emphasis of
work has shifted to reflect the scientific objectives of
ENSEMBLES and the aim of maximising exploitation of the
results. This shift of emphasis is demonstrated by the five key
issues which are highlighted in this section.
• The adaptation of existing downscaling methods for
probabilistic projections.

• The synergistic use of dynamical and statistical
downscaling.

• The integration of downscaling work on climate change
and seasonal-forecasting time-scales.

• The shift of emphasis to tools.
• Meeting user needs.

6.2 Adapting methods for probabilistic
projections

Exploration of uncertainty is central to ENSEMBLES work.
The downscaling step is centrally embedded in the cascade of
uncertainty and thus needs to take account of ‘upstream’
uncertainty (in the case of ENSEMBLES, the information
provided by RT1, RT2A and RT7), as well as accounting for
the downscaling uncertainties themselves (information from
RT2B and RT3), before passing on accessible and relevant
information to ‘downstream’ users (such as RT6). See Figure
1.1 for an illustration of this flow of information.

While the earlier PRUDENCE, STARDEX and DEMETER
projects undertook some preliminary analyses of downscaling
uncertainty, these were not extensive and, at least in the case
of climate change projections, information was not presented
in a probabilistic way. Thus, adapting downscaling methods
for probabilistic climate change projections has been a major
challenge for the regional work in ENSEMBLES.

The emphasis of this work has been on uncertainties
associated with the boundary conditions driving the
downscaling models and the downscaling uncertainties
themselves. For both science and policy reasons, it makes
sense to consider these uncertainties separately from the
emissions scenarios uncertainties, particularly for users whose
main concern is changes over the first part of the century,
where the choice of emissions scenario is less important. Thus
the RT2B climate change work has focused on the A1B
emissions scenario, using outputs from the RT2A stream 1
simulations.

6.2.1 Sampling and ‘quantifying’ the uncertainties

Dynamical downscaling

One of the major achievements and legacies of ENSEMBLES
is the production of a large ensemble of transient RCM runs
for Europe at 25 km resolution for theA1B scenario (Jacob et
al., 2009). All runs cover the time period 1950–2050 (the
period of greatest interest to most applications users and
stakeholders), with many of them extending to 2100 (when
the signal-to-noise ratio is highest). This ensemble was
designed jointly by RT3 and RT2B partners, and the
construction of the GCM-RCMmatrix is described in Section
5.2.6. Project resources did not permit this matrix to be
completely filled, although this is an issue for ongoing
discussion in the European RCM community. Statistical
techniques for extending the matrix are discussed in Sections
6.3 and 5.2.6. Nonetheless, the ENSEMBLES RCM
ensemble is the largest available for any region of the world
and is readily accessible to users (see Section 6.6).

A so-called ‘quick-look’ analysis was undertaken in order to
monitor the progress and quality of the simulations (important
for the project team), and to provide first results at an early
stage (important for users). The analysis focused on near-
surface temperature, precipitation and evaporation and used
the eight PRUDENCE regions. Figure 6.1 shows, as an
example, the temporal evolution of annual near-surface
temperature for the ‘Scandinavia’ region, while Figure 6.2
shows the annual precipitation totals.

In Scandinavia, temperatures show an increasing trend
throughout the entire 21st century (Figure 6.1). This is typical
of the behaviour for all European regions; only the strengths
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of the temperature increases vary from region to region.
Compared with observations (black line in Figure 6.1), three
of the four shown GCMs and several RCMs start from a clear
cold bias during the 20th century. The increase in temperature
is, however, clearly visible in all simulations.

Less obvious is the trend in precipitation for Scandinavia
(Figure 6.2). For some models, almost no trend is visible,
whereas others show only a small trend. The overestimation of
observed precipitation in all simulations is striking (see also
Section 5.2.4). This can only partly be explained by the
observations being too low due to undercatch of precipitation
drifting around rain gauges. The overestimation could be
caused either by deficiencies in model formulation or by too
much moisture being transported into the domain from the
GCM boundary information. One study of the RCA3-
simulated water budget for the Baltic Sea drainage basin
shows that part of the overestimated precipitation in this
region is due to poor boundary conditions, but the wet bias in
the global model is reinforced by the RCM (Kjellström and
Lind, 2009).

For the annual precipitation trends, there is no clear signal
across all regions. While there is some indication of an
increasing trend for Scandinavia, there are other regions with
nearly no change, or with moderate decreasing trends.
However, for the seasonal trends in precipitation (not shown),
there are – for most regions – clear decreasing trends in
summer (JJA) over the 21st century, which are strongest in the
southern regions, and clear increasing trends for winter (DJF),
which are strongest in the northern regions.

Analyses have also been undertaken of more ‘applied’
variables. For example, changes in the Mediterranean Sea
water budget have been explored (Sanchez-Gomez et al.,
2009). Compared with the IPCC AR4 GCMs (Mariotti et al.,
2008), the RCMs give major improvements in aspects such as
runoff and Black Sea discharge terms. The transient RCM runs
show the emergence of significant changes from 2050, with a

large increase of +40% in theMediterranean fresh water deficit
from 1950–1999 to 2070–2099.

Robustness of RCM results

The uncertainties embedded in the development of the climate
systems models and estimation of possible changes are very
large and only partly quantifiable (see Section 5). Nonetheless,
adaptation to climate change requires robust information about
possible regional changes. Thus, preliminary steps to analysing
the robustness of the ENSEMBLES RCM annual climate-
change signals are shown in Figures 6.3–6.6 (based on results
from sixteen RCMs). For near-surface temperature, the signal of
the multi-model mean is positive in all parts of Europe (Figure
6.3) and is much larger than the standard deviation (Figure 6.4).
This increase in temperature can therefore be interpreted as a
robust signal.

For precipitation, Europe can clearly be divided into two
regimes, with increased precipitation in the north and decreased
precipitation in the south (Figure 6.5). This pattern can also be
interpreted as a robust one, since the number of models agreeing
on an increasing precipitation signal reaches sixteen out of
sixteen for the northern increase, and only two to four out of
sixteen disagree with the decrease in the south.

These findings are in general agreement with earlier studies
from the PRUDENCE project. However, since the
ENSEMBLES results are based on a larger GCM-RCMmatrix,
a somewhat lower emissions scenario (A1B rather thanA2) and
a closer to present-day period (2021–2050 rather than 2071–
2100), they provide stronger evidence of the robustness of these
climate-change signals.

In addition, the robustness of seasonal changes in precipitation
is shown in Figure 6.7. Here, a new approach based on weather
regimes has been used to estimate changes for missing cells in
the GCM-RCM matrix (see Section 5), allowing statistical
significance to be assessed. In large parts of Europe, significant
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Figure 6.1: Time-series (running 10-year mean) of annual mean near-
surface (2 m) temperature (°C) for the land fraction of the
PRUDENCE region ‘Scandinavia’. Dashed thick lines show the
driving GCMs, thin lines the ENSEMBLES RCMs, and the black line
the ENSEMBLES RT5 gridded observational dataset.

Figure 6.2: Time-series (running 10-year mean) of annual
precipitation totals (mm/yr) for the land fraction of the PRUDENCE
region ‘Scandinavia’. Dashed thick lines show the driving GCMs,
thin lines the ENSEMBLES RCMs, and the black line the
ENSEMBLES RT5 gridded observational dataset.
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and spatially coherent patterns in winter and summer
precipitation trends are visible, although there are also quite
extensive areas with no significant patterns. These results are
in general agreement with those coming directly from the
ENSEMBLES GCMs (Figures 3.11 and 4.3), but the added
regional detail is of utmost importance for downstream impact
assessments. For Scandinavia, the signal of increasing
precipitation is robust for both winter and summer, while for
the UK the winter precipitation increase is robust but there is no
summer signal, and for much of southern Europe the only clear
signal is the summer decrease.At the same time, there are areas
such as the south-east Iberian Peninsula, the Alps and parts of
central Europe with no clear signal in either season.
Complementary ENSEMBLES work (Kendon et al., 2009a)
analysing the underlying mechanisms has shown that model
agreement in precipitation change across Europe generally
reflects the dominance of mechanisms in which we have high
confidence. In particular, increases in precipitation across
northern Europe in winter are dominated by increasing
atmospheric moisture with warming; whilst, in summer,
warming combined with reduced soil moisture drives decreases
in precipitation across southern Europe.

As well as considering the coherence and consistency of the
climate-change signal as a component of robustness, issues
related to model performance and ensemble size are also
relevant. The topic of the different possibilities for ensemble
construction and the resulting performance has been examined
with respect to wind storms (see Section 6.6.3) in order to
estimate the effect of the partly arbitrary model selection for

multi-model ensembles studies (e.g., due to the availability of
model simulations). Based on the ten ENSEMBLES RCMs
available at the time of the study, there are in total 1,023 possible
combinations containing between one and ten models. The
results indicate a higher consistency of the (sub-)ensemble
performance for large ensembles containingmanymodels, even
if the more weakly performing models are included (Donat et
al., 2009c; see Figure 6.8). This provides support for the
ensembles strategy and indicates that users should work with
the full ensemble wherever possible.

Figure 6.3: Climate-change signal (2021–2050 minus 1961–1990) for
annual near-surface (2 m) temperature (°C) for the multi-model mean
of the ENSEMBLES RCMs.

Figure 6.4: Inter-model standard deviation of the climate-change
signal (2021–2050 minus 1961–1990) for annual near-surface (2 m)
temperatures (°C) for the ENSEMBLES RCMs.

Figure 6.5: Climate-change signal (2021–2050 relative to 1961–
1990) for annual precipitation total (%) for the multi-model mean of
the ENSEMBLES RCMs.

Figure 6.6: Number of RCMs which show an increase in
precipitation (2021–2050 relative to 1961–1990) for the
ENSEMBLES RCMs.

Figure 6.7: Location of points with a significant positive (light grey) or
negative (dark grey) change in total precipitation (2021–2050 minus
1961–1990) in winter (left panel) and summer (right panel).



Partitioning of uncertainty in the RCM simulations

A Monte Carlo variance partitioning approach was used to
quantify three sources of uncertainty (choice of GCM, choice of
RCM, and interannual variability) in the seasonal temperature
and precipitation changes projected by the ENSEMBLES
RCMs (Déqué et al., 2009). As well as using the ANOVA
approach used in PRUDENCE (Déqué et al., 2007), a new,
weather-regime-based, matrix-filling technique has been
developed to complete the GCM-RCM matrix (see Section
5.2.6). The application of this technique is demonstrated in
Figure 6.9, which shows the partitioning of GCM and RCM
uncertainties (and their interaction) for the eight European
PRUDENCE (or Rockel) regions.

This analysis (Déqué et al., 2009) indicates that for precipitation
the first cause of model spread in summer is the choice of RCM,
with the second being the choice of GCM (Figure 6.9). In winter
(as for temperature in both seasons), both components
contribute fairly equally, although the GCM choice dominates
in western Europe. The finding that the relative strength of
different uncertainties varies from region to region, variable to
variable, and season to season confirms earlier findings from
the PRUDENCE project. The third cause of spread (not shown)
is interannual variability.

Another ENSEMBLES study has demonstrated the importance
of considering intra- as well as inter-RCM variability
(Kjellström et al., 2009). This study shows that differences in the
climate-change signal are sometimes as large, or larger, between
the three RCA3–ECHAM5–A1B simulations than between the
corresponding RCA3–other GCM–A1B simulations. Also, the
three-member perturbed physics ensemble (RCA3 downscaling
HadCM3Q1 [reference], Q3 [low climate sensitivity] and Q16
[high sensitivity]) shows that natural variability is important

(here, the low-sensitivity simulation shows a much larger
climate-change signal for wintertime temperature in the 2011–
2040 period than the high-sensitivity simulation – also a result
of natural variability).

It should be stressed that these results are based on changes up
to the middle of the century (2021–2050 and 2011–2040).Work
focusing on the end of the 21st century (the 2080s) suggests a
somewhat different balance of uncertainty, with a stronger
emphasis on GCM uncertainty (see Sections 5.2.6 and 6.3.4).
The general message emerging from the new ENSEMBLES
studies, and the earlier PRUDENCE work, can be summarised
as: the higher the climate-change signal, the more important the
GCM spread; the lower the signal, the more important the
RCM. This implies that, for the end of the century, it is
important to fully sample the range of GCM uncertainty,
whereas for periods closer to the present day, more RCMs
should be sampled. The design of the ENSEMBLES GCM-
RCMmatrix gives users the opportunity to adopt such different
sampling strategies.

The ENSEMBLES work has, however, raised some interesting
questions concerning how ‘interannual’and ‘natural’variability
are defined and the extent to which they are encompassed by
inter- and intra-RCM variability. It has been shown, for
example, that there is a significant contribution to natural
variability on at least multi-annual time-scales and potentially
up to multi-decadal time-scales (Kendon et al., 2008). But it is
difficult to determine whether longer time-scale natural
variability is included in, for example, the ‘RCM uncertainty’
component of the Déqué et al. (2009) analysis discussed above.

62

6 Downscaling methods, data and tools for input to impacts assessments

Figure 6.8: Correlations of annual wind storm losses in Germany
calculated from all possible model combinations in comparison with
insurance loss data. For each group of sub-ensembles consisting of
between one and ten models (x axis) the range of correlation values
(y axis) is indicated. The black vertical ticks at the top (bottom) of
the range show the highest (lowest) correlation value from all sub-
ensembles in each group consisting of N models. The red boxes
indicate the range between the 10th and the 90th percentile of all
correlations, the black horizontal line in the centre corresponds to
the median.

Figure 6.9: Fraction of variance (%) explained by the RCM (lower part
of bars), the GCM (top part of bars) and their interaction term (middle
part of bars) for 2021–2050 minus 1961–1990 changes in temperature
(T) and precipitation (P) in winter (DJF) and summer (JJA), and for
eight regions: British Isles (BI), Iberian Peninsula (IP), France (FR),
Mid-Europe (ME), Scandinavia (SC), Alps (AL), Mediterranean (MD)
and Eastern Europe (EA).
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Statistical downscaling

As a starting point for the modification of statistical
downscaling methods for probabilistic projections,
ENSEMBLES first considered the issues from a theoretical
perspective – dividing the uncertainties into three groups, as
follows.
1. Uncertainties ‘previous’ to downscaling, encompassing

uncertainties in the large-scale forcing – which can be
expressed as:What will be the low-resolution atmospheric
configuration in the future (not for a specific date in the
future, but the frequency of occurrence of each
configuration)?

2. Uncertainties related to downscaling itself, expressed by
the question: If the low-resolution atmospheric
configuration for a day is a ‘certain one’, what will be the
high-resolution surface effects? In this case the
uncertainties are related to issues such as forcings not
considered; stationarity; overfitting; range of applicability;
overall underlying skill; and spatial resolution of
predictands.

3. ‘Downstream’uncertainties, expressed as:What will be the
impacts of the projected changes on human and natural
systems? (see Section 9).

In order to quantify the second set of uncertainties, a number of
partners have contributed to a common experimental framework
using daily maximum and minimum temperature for ten
European stations, a set of standard predictors from one GCM,
from which different combinations of predictor fields are
chosen for individual models, and several different downscaling
methods and their variants: regression (stepwise, PCs, stratified
by circulation pattern), neural networks, canonical correlation
analysis, and a two-step analogue method. For the construction
of the PDFs (probability density functions), a Gaussian kernel
estimate with a window width of 0.25°C is employed. An
example of the effect of weighting the PDF is shown in Section
6.2.2. Once completed, this work will provide an indication of
the relative importance of the different sources of statistical
downscaling uncertainty.

While the use of inputs from a single GCM allows exploration
of the downscaling uncertainties, work has also been done using
multiple GCM inputs. For example, a conditional stochastic
weather generator (CWG) has been developed and used to
construct daily precipitation projections for stations in Romania.
The CWG first estimates the model parameters from large-scale
predictors using canonical correlation analysis. Daily
precipitation is then generated in 1,000 runs of the stochastic
model for each set of boundary conditions – allowing
calculation of the ensemble mean for ten precipitation indices
(including six extremes) and associated 90% confidence
intervals – a novel way of presenting statistical downscaled
outputs. Currently, the CWG has been applied to seven
ENSEMBLES GCM runs to produce probabilistic projections
for the 2080s.

The ENSEMBLESwork has shown that statistical downscaling
methods can successfully be modified and used to construct
probabilistic regional projections. Further methodological issues
relating to statistical downscaling are discussed in Sections 6.2.2
and 6.3.

6.2.2 Development and application of model
weighting schemes

The development and application of model weighting schemes
is one of the cross-cutting issues that has been addressed in
many of the ENSEMBLES Research Themes. A number of
critical questions were identified in the early stages of the
project and have informed the downscaling-related work,
although it has not been possible to answer all of them (Table
6.1).

The weighting methodology developed for the ENSEMBLES
RCM simulations (i.e., for dynamical downscaling) is described
in Section 5.2.5. Independently of this work, consideration was
given to the components that should be included in weighting
schemes for statistical downscaling. The following five criteria
were identified.
1. Statistical downscaling model performance (i.e.,

conventional metrics such as correlation, bias and RMSE
calculated over an independent validation period).

2. Reproduction of trends and climate states.
3. Performance of driving-model predictors (i.e., ability of

forcing GCMs to reproduce the predictors used for
statistical downscaling).

4. Stability of predictor–predictand relationships.
5. Correction for multiplicity of statistical downscaling

models.

Of these five, criteria (1) and (2) have been implemented to
date. An example is provided in Figure 6.10, based on a set of
39 statistical downscaling models. It displays the effect of two
weights; one related to criterion (1), in this case, the variance
explained. For criterion (2), the weight is constructed so that it
(a) equals one for the exact reproduction of a trend; (b) equals
zero for a zero trend; (c) equals zero for trends equal to double

Table 6.1: Questions on model weighting and answers from the
downscaling perspective.



the value of the observed trend; (d) is linearly interpolated
between these three values; and (e) equals zero outside these
values. A trend here means the slope of a regression line for
temperature against time. One can see that the probability of a
temperature change being small decreases considerably when
the model outputs are weighted. The models producing low
temperature changes tend to explain less variance, i.e., tend to
be less reliable. The effect of a correct estimation of trends is
smaller, mainly because of the short independent validation
period on which this example is based (10 years).

Criterion (3) has been considered through the comparison of
observed (from ERA-40) and GCM control period EOF
(empirical orthogonal function) patterns – which could be
quantified as a single metric using anomaly correlation
coefficients and root mean square errors. For the moment it is
unclear how to quantify criterion (5), multiplicity, since it is
unclear how to quantify the (dis)similarity between the
statistical models themselves (which is fundamentally different
from the (dis)similarity between their outputs).

This set of criteria can be compared with that selected for
dynamical downscaling (see Section 5.2.5). In both cases, the
metrics extend beyond simple measures of mean climate. Both
sets include the reproduction of trends, for example, based on
the argument that the ability to capture observed temporal trends
implies that a model is capturing some of the processes
associated with anthropogenic warming. This relates to the
views expressed by ENSEMBLES scientists in workshop
discussions that a climate model is more likely to be credible if

the climate physics and processes are well represented than
simply if the simulated mean control climate for the important
variables is close to the mean observations. The latter is a
‘necessary but not sufficient’ condition with respect to future
performance. However, while other ENSEMBLES Research
Themes have explored these process issues thoroughly (see
Sections 7 and 8), it has not been possible to incorporate this
work or qualitative expert knowledge into the quantitative
weighting metrics.

The weighting schemes developed for both statistical and
dynamical downscaling should be viewed as first and partial
attempts. A number of issues still need to be resolved; in
particular, how to combine regional weights with those from
global models (see Table 6.1). One potential approach would
be to calculate the RCMweights using the GCM-forced control
runs (the current weights are based on ERA40-forced runs).An
analysis of 50 km resolution simulations performed with the
RCA RCM indicates that the biases are generally larger when
RCA is forced by GCMs compared with ERA-40 and that the
biases are very different, given different GCMs (Kjellström et
al., 2009). For statistical downscaling, one strategy would be to
incorporate metric three above. How to apply separate
weighting schemes for the GCM and downscaling, without any
‘double-counting’, is a more problematic issue. Another issue
which has not been fully addressed is the extent to which the
weighting schemes are considered relevant by applications
users.

Mindful of their preliminary nature, the statistical and
dynamical downscaling ENSEMBLES weighting schemes
have been used to construct PDFs (Figures 6.10 and 6.11) and
to explore the sensitivity of the PDFs to weighting. Figure 6.11
shows PDFs of changes in daily mean temperature and
precipitation for Heathrow, UK. The PDFs are constructed using
‘climate change factors’ from seventeen ENSEMBLES RCM
runs to perturb the parameters of a weather generator trained on
station data (Goodess et al., 2007). The weather generator is
stochastic and is run 100 times for each set of change factors
(i.e., 17 × 100 runs). The RT3 product-based weighting scheme
(Figure 5.5) is used to sample from the outputs: sampling future
minus present-day changes more frequently from the higher-
ranked models (selecting or skipping runs randomly). This
approach has been applied for thirteen European stations. In
general, as Figure 6.11 illustrates, the RCM-based weighting
scheme does not have a major impact on the PDFs. The effect
does, however, appear to be somewhat greater for temperature
(particularly in winter) than for precipitation, tending to shift
the mode towards smaller temperature changes and, in some
cases, to slightly narrow the width of the PDF.

However, these findings may be a reflection of the particular
methodology used (for example, the noise produced by the
weather generator or because the GCMs are not equally
sampled; twelve of the RCM runs are driven by two GCMs),
although a similar conclusion is reached through a comparison
of weighted and unweighted multi-model means (see Figure
5.6). Further comparison of weighted and unweighted (or, more
accurately, equally weighted) PDFs using different PDF
construction techniques is needed. It may also be the case that
incorporating GCM weights would increase the sensitivity to
weighting. An alternative approach for constructing future

64

6 Downscaling methods, data and tools for input to impacts assessments

Figure 6.10: PDFs of daily maximum temperature from 39 statistical
downscaling models, winter, Strážnice, Czech Republic. Horizontal
axis = temperature change (°C); vertical axis = probability; black bars
= weights of individual downscaling models, horizontally positioned
by their temperature change; red line = estimated PDF of temperature
change. Bottom = without weighting; centre = weighted by criterion
(1); top = weighted by the product of criteria (1) and (2).
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PDFs, applying an implicit weighting, has been presented by
Buser et al. (2009). This method is based on a Bayesian
statistical model and allows for a time-dependent estimation and
correction of model biases. In addition, it includes an estimation
of changes in interannual variability.

Weighting of downscaled outputs is a new research area. The
ENSEMBLES work has shown that this is a complex topic,
from both a theoretical and a practical viewpoint. While it has
not been possible to answer all the questions (Table 6.1), the
first examples of weighted regional PDFs have successfully
been produced (see also Sections 6.2.3 and 6.6.2).

6.2.3 Constructing PDFs

Probability density functions (PDFs) are one of the most
common and useful ways of presenting probabilistic climate
change information (see Section 6.6). At the start of the
ENSEMBLES project, a number of groups had produced
PDFs of global temperature change, but PDFs of regional
change were almost non-existent. Thus the development of
methods for producing regional PDFs from Global and
Regional Climate Model output, as well as from statistical
downscaling (Figures 6.10 and 6.11) has been an important
part of RT2B work. Here, two examples are presented: the first
uses a refined version developed in ENSEMBLES (Xu et al.,
2009) of the reliability ensemble averaging (REA) approach
(Giorgi and Mearns, 2002, 2003) applied to CMIP3 GCM
output (which includes the ENSEMBLES stream 1 climate
change simulations; see Section 4), while the second uses the
ENSEMBLES RT3 weighting scheme and the RT2B transient
RCM runs.

Figures 6.12 and 6.13 show PDFs of seasonal temperature and
precipitation change at 2021–2050 for the eight European
PRUDENCE/Rockel regions and the A1B scenario, based on
output from eighteen CMIP3 GCM runs. In the refined REA

method, the PDFs are constructed by first calculating weights
for each model based on their temperature and precipitation
biases, errors in temperature and precipitation variability, and
sea level pressure correlations (Xu et al., 2009). After the
weights are calculated, the probability of the change being
greater than a specific threshold is given by the sum of the
models that exceed that threshold – each multiplied by its
weight and normalized by the sum of the weights. For
example, if the weights are all 1/N (where N = number of
models), this is simply the proportion of models above that
threshold (similar to the approach used in unweighted seasonal
prediction). This procedure produces a cumulative distribution
function (CDF). A numerical derivative of the CDF is then
taken to obtain the PDF. Finally, everything is normalized.

Even at 2021–2050, some clear changes are evident in the
PDFs, particularly for temperature. The temperature PDFs for
the different regions largely overlap, though there are clear
seasonal differences, with the greatest warming indicated for
the Scandinavia region in autumn and winter, and for the Iberian
Peninsula in summer (Figure 6.12). The peaks of the
precipitation PDFs (Figure 6.13) cluster closer to zero, with
quite a large spread either side, but there is indication of the
north/south, summer/winter differences in signal previously
identified in Section 6.2.1. PDFs have also been constructed for
2071–2100 (not shown). As expected, these indicate larger
changes and even greater spread. In a few cases (e.g., spring
rainfall changes for the Iberian Peninsula 2021–2050, and
autumn rainfall changes for theMediterranean 2071–2100), the
distributions are bimodal.

Figure 6.14 shows an example, for Madrid, of a joint (bivariate)
PDF for seasonal changes in temperature and precipitation
(Déqué, 2009). Similar plots, alongwith single variable PDFs and
bivariate cumulated distribution plots, have been produced for the
RCM grid-box locations closest to 35 European capitals using
output from sixteen of the ENSEMBLES transient RCMruns and
the RT3 rescaled weights (see Section 5.2.5). Rather than using a

Figure 6.11: Probability density of getting a certain change in mean temperature (left side) and precipitation (right side) for Heathrow, UK (2021–
2050 minus 1961–1990; A1B scenario). Red curve = unweighted (equal weighting); black curve = weighted using RT3 product-based scheme;
coloured vertical bars = changes calculated directly from the seventeen RCMs.



computationally complex continuous distribution, 200 bins are
considered for each variable. A Gaussian filter (known as the
Gaussian kernel method) is applied. The probability (frequency)
in each bin is replaced by a Gaussian distribution with the mean
as the centre of the bin and standard deviation values adjusted to
cancel out as far as possible any multimodal effects, but to avoid
over-smoothing of the distribution.

The PDFs forMadrid (not shown), for example, indicate a mean
precipitation increase in winter at 2021–2050 of 0.1 mm/day,
with decreases in other seasons (a maximum of 0.22 mm/day in
autumn). The maximum warming is in summer (2.3°C). As
illustrated by Figure 6.14, the spread is quite large. And while
the temperature changes are nearly always positive, the
precipitation distributions always span a negative to positive
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Figure 6.12: PDFs of seasonal temperature change (2021–2050 minus 1961–1990; A1B scenario) constructed using the revised REA method
applied to eighteen CMIP3 GCM runs. British Isles (BI), Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), Alps (AL),
Mediterranean (MD), Eastern Europe (EE).

Figure 6.13: PDFs of seasonal precipitation change (2021–2050 minus 1961–1990; A1B scenario) constructed using the revised REA method
applied to eighteen CMIP3 GCM runs. British Isles (BI), Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), Alps (AL),
Mediterranean (MD), Eastern Europe (EE).
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range. In fact, there is always at least 10% probability that the
sign of precipitation response is negative and at least 10% that
it is positive, whatever the capital or season. Thus the PDFs
provide a valuable graphical representation of the different
spread of uncertainties for temperature (more certainty)
compared with precipitation (less certainty).

6.3 Synergistic use of dynamical and
statistical downscaling

6.3.1 Introduction

There has been a tendency to view dynamical and statistical
methods as mutually exclusive and even competing approaches
to downscaling. A rather different view has been taken in
ENSEMBLES, where the potential for using the two
approaches in a complementary, synergistic way has been
explored, as well as undertaking some direct comparisons of
performance.

6.3.2 Forcing statistical downscaling models with
RCM output

TheENSEMBLESRCMs provide grid-box information at 25 km
resolution (which generally has added value compared with
coarser resolutions – see Section 5.2.4), while one of the benefits
of statistical downscaling is the potential to provide information
at station/point locations. The usual approach is to drive statistical
modelswithGCMoutput, but ENSEMBLES has also usedRCM
forcing. Figure 6.11, for example, shows PDFs for Heathrow
constructed by perturbing a stochastic weather generator with
output from the ENSEMBLES transient RCMs.

In another ENSEMBLES study, predictors from the ERA40-
forced RCM runs have been used to downscale seasonal indices
of temperature and precipitation extremes for four Irish stations,
using multiple linear regression. Preliminary results for one
RCM indicate that statistical downscaling brings additional skill
for most investigated indices if examining the root mean square
error and the correlation. However, regressions for the
precipitation indices are generally too ‘flat’, resulting in an
underestimation of the most extreme values of the indices.
Therefore a bias correction method has been developed which
corrects daily values of 2 m temperature and precipitation
towards the observed distribution. This method has to be further
tested with other RCMs, but it is promising, as it seems to result
in a better representation of the most extreme values of the
precipitation indices than the direct model output.

6.3.3 Direct comparison of dynamical and statistical
downscaling

The availability of the E-OBS gridded dataset at 25 km
resolution (Section 8) has facilitated the direct, like-with-like
(i.e., grid box vs grid box rather than point vs grid box)
comparison of the two downscaling approaches. E-OBS data
have been used as predictands in a two-step analogue
downscaling model and the results compared with those from
the ERA-40 RCM runs. Results for trends in the Tmax 95th
percentile are shown in Figure 6.15. The statistical method
displays consistently higher correlations than the RCMs, but the
standard deviations of spatial variability across the European
domain are consistently low – lower than the worst of the RCMs
in the majority of cases. Overall, however, the statistical model
results lie somewhat closer to the ‘perfect point’ than those of
the RCMs.

Figure 6.14: Bivariate PDFs for temperature and precipitation response (2021–2050 minus 1961–1990; A1B scenario) in Madrid for DJF (top left),
MAM (top right), JJA (bottom left) and SON (bottom right). Contours indicating densities are plotted for 5, 20, 40, 60, 80 and 100 of 10−2°C−1mm−1

per day.



6.3.4 Matrix filling and pattern scaling

As noted in Section 5.2.6, one of the techniques for filling the
GCM-RCM matrix evaluated in ENSEMBLES is a pattern-
scaling approach. The conventional approach is to estimate the
local climate response using global mean temperature change as
the scalar, and this has been shown to be skilful for temperature
but not for precipitation (Mitchell et al., 1999). In
ENSEMBLES, a new local scaling approach has been
developed, using the large-scale GCM change as a predictor of
the 2080s RCM response. Initial results suggest that this may be
skilful for different driving GCMs (i.e., the RCM response can
be predicted for untested GCM-RCM pairs) and is therefore
skilful for filling the GCM-RCMmatrix (Kendon et al., 2009b).
In particular, it performs well for precipitation (mean, variance
and extremes) across much of Europe in winter; and for
temperature (mean and extremes) in summer and winter, with
the exception of central Europe in summer (Figure 6.16).
Internal variability may, however, lead to a substantial apparent
reduction in scaling skill for precipitation, with scaling
relationships only being reliable where the local change is
robust compared with internal variability. By comparing scaling
skill for different driving GCMs with different RCMs (Figure
6.16), this work also provides guidance on how to prioritise
RCM simulations for the 2080s. In particular it suggests that, for
this period, priority should generally be given to sampling
different driving GCMs rather than different RCMs (see Section
5.2.6).

6.3.5 Evaluating stationarity

The problem of stationarity – i.e., the assessment of whether
the statistical relationships between large-scale GCM fields
(predictors) and local observations (predictands) derived from
present climate data are still valid under future climate
conditions – remains a concern for statistical downscaling.
The ENSEMBLES downscaling portal (see Section 6.5.2) has
been used to analyse this problem in the northern Iberian
Peninsula, a homogeneous climatic region with mostly frontal
activity. Predictors (geopotential, temperature and humidity
fields at 1,000, 850 and 500 mb) were taken from the
ECHAM5 GCM, using as pseudo-observations daily surface
temperature and precipitation from the RACM02 RCM
coupled to present and future (A1B) ECHAM5 projections.
Different statistical downscaling methods were tested: M1 –
a standard analogue method; M2 – a linear regression model
based on the first ten circulation patterns; and M3 – linear
regression conditioned on fifteen weather types. The present
climate scenario (1961–2000) was used to train the models,
which were then applied to the A1B time-slices 2011–2040,
2041–2070 and 2071–2100. RMSE errors for temperature for
these future periods are shown in Table 6.2. The statistical
methods are generally able to reproduce the RCM simulations
of future climate periods – implying stationarity – with only
small relative increments in RMSE over time. The only
exception is the analogue downscaling method, which
exhibits large increases in error for summer temperature in
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Figure 6.15: Taylor diagram for trends in the 95th percentile of Tmax in winter (top left), spring (top right), summer (bottom left) and autumn
(bottom right). All models are forced with ERA-40. Small crosses = RCMs; large cross = two-step analogue method. The ‘perfect point’ is located
at 1.0 on the horizontal axis, 0.0 on the vertical axis.
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the final period. As well as providing insight into the
stationarity issue (along with an analysis where M1, M2 and
M3 are alternately trained/validated on cold/warm periods),
these results indicate that statistical downscaling can be an
appropriate technique for matrix filling and increasing the
ensemble size (see Section 6.3.4).

6.4 Integration of climate change and
seasonal forecasting time-scales

One of the novel aspects of ENSEMBLES has been the focus
on both climate change and seasonal forecasting time-scales.
This has provided the opportunity for new interactions and
discussions between the two research communities, which has
been particularly valuable in the context of downscaling issues.
For example, theoretical and practical comparisons have been
made of the Perfect Prog approach to statistical downscaling (in
which the statistical models are calibrated using observations),
typically used by the climate change community, with the
Model Output Statistics (MOS) approach used by the seasonal
community. Here, work on the ENSEMBLES stream 2 seasonal
hindcasts (see Section 3) is presented.

Validation of the stream 2 seasonal multi-model prediction
dataset has been undertaken, focusing on winter precipitation
forecasts over Europe for the whole period (1961–2005). The
validation method consists in evaluating the ROC skill area
(RSA) for the three terciles: dry, normal and wet (Sordo et al.,
2008). Although, in general, there is little skill in the winter
precipitation forecast over Europe, if the same validation is done
conditioned to ENSO events (e.g., La Niña events), then some
areas of skill appear (Figure 6.17). This indicates that at least the
ENSO-driven portion of precipitation over Europe is predicted
with some skill (Frías et al., 2009).

Figure 6.16: Comparison of local scaling skill in estimating local changes for the 2080s for different driving GCMs (red) with that for different
RCMs (green). Only grid cells where the local change is robust compared with natural variability are included in the analysis. SC Scandinavia, BI
British Isles, ME Mid-Europe, EA Eastern Europe, FR France, AL Alps, IP Iberian Pensinsula, MD Mediterranean. Values lying above the shaded
area are considered to be skilful.

Table 6.2: Root mean square error (RMSE) for three different statistical
downscaling methods (M1, M2, M3) applied to the RACMO
temperature pseudo-observations, using as predictors the output from
the ECHAM5 A1B scenario for different seasons and future time-slices.



In addition, the Rossby Centre RCAregional climate model has
been applied to dynamically downscale the ECMWF stream 2
seasonal simulations in the European-Atlantic domain for the
period 1981–2001 and five ensemble members (Diez et al.,
2009). The 1-month lead time global and regional precipitation
predictions were evaluated in Spain focusing on autumn, since
some skill has already been found for this period. A robust
tercile-based probabilistic validation approach was applied to
compare the forecasts obtained from the global and regional
models. For the low tercile, the skill of an ensemble combining
the five members of the regional model ensemble and six
members from the global model not used to provide the
boundaries in the downscaling process is higher than that of the
driving global model over a relatively large area covering the
southern half of peninsular Spain. Moreover, the five-
member regional model ensemble competes with, and
occasionally surpasses, the skill of the full ensemble of eleven
members provided by ECMWF’s operational System3.

Finally, the multi-model stream 2 summer (JJA) predictions
have been calibrated using aModel Output Statistics scheme so
as to produce summer averaged multi-model ensemble
predictions of Tmax over Italy for the period 1971–2005.
Figure 6.18 shows the time-series of the box plot of the

calibrated ensemble prediction for the first principal
component (PC1) of Tmax over Italy, together with the
observed value and the median for each model ensemble.
Results show the presence of some skill in the calibrated
forecasts (the correlation between the multi-model ensemble
median and observations is 0.86 and the Brier skill score for
positive events of PC1 is 0.34) and an analysis has been done
to investigate the sources of predictability in the system. The
statistical calibration technique has also been applied to
produce seasonal predictions which are used as input to an
impact model chain consisting of a weather generator, a surface
water balance model, and a crop yield model in order to
produce predictions of wheat yield and kiwi fruit irrigation
water requirement (see Section 9).

6.5 Shift of emphasis to tools

6.5.1 Introduction

End-user applications for impact studies require accessing and
post-processing huge amounts of information (reanalysis,
GCM projections, etc.) over particular regions of interest. This
information is typically distributed in different repositories,
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Figure 6.17: ROC skill area (RSA) for winter dry events (lower tercile) for all stream 2 multi-model hindcasts over Europe (upper row), and
conditioned to La Niña events (lower row). The higher RSA scores in the lower row indicate greater predictive skill under La Niña conditions.

Figure 6.18: Time-series of box plots of calibrated ensemble predictions of the first principal component (PC1) (dimensionless units) of JJA
averaged Tmax over Italy compared with observations (red stars). In the majority of cases, the observations lie reasonably close to the median
(solid horizontal line at the centre of each box plot) for each model ensemble, and only in a few cases lie outside the quantile range (boxes). Other
colour stars indicate single model ensemble median, namely: green - ECMF ensemble median; orange - EGRR ensemble median; magenta -
LFPW ensemble median; dark green - INGV ensemble median; cyan - IFMK ensemble median
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which use different formats, data conventions and storage
systems. Moreover, different post-processing algorithms (bias
removal, interpolation, calibration with observations, etc.) are
typically applied to the accessed data before using the
resulting time-series to feed the impact models. User-friendly
data access and analysis tools, such as the climate explorer
portal (climexp.knmi.nl), are becoming increasingly popular
among end-users in order to facilitate this work. These tools
provide homogeneous access to local and remote (e.g.,
through OPeNDAP) climate data, allowing the application of
different post-processing algorithms and delivery of the results
in simple formats (e.g., graphics or text files).

6.5.2 The ENSEMBLES downscaling portal

A key ENSEMBLES aim is to maximize the exploitation of
results by linking the outputs of the ensemble prediction
system to a range of applications, including agriculture and
energy. Thus the ENSEMBLES Downscaling Portal
(www.meteo.un-ican.es/ensembles; Cofiño et al., 2007; San-
Martín et al., 2009) has been developed following an
end-to-end approach to fill the gap between the coarse-
resolution model outputs and the high-resolution/local needs
of end-users. The portal is based on internet and GRID
technologies allowing the transparent use of distributed
resources, both for data and computation – thus connecting
data providers and end-users in a web-based transparent way.

The downscaling portal provides user-friendly homogeneous
access to a subset of ENSEMBLES GCM (both seasonal
predictions and climate change projections) and RCM outputs,
allowing local interpolation or downscaling to the
region/location of interest and bias removal. Users can also
upload their own observed grids or networks and interactively
downscale the model outputs testing several statistical
downscaling methods (including regression, neural networks,
analogues and weather typing).

6.5.3 Applications

As well as being freely available to all external users, the
ENSEMBLES downscaling portal has been applied in a variety
of studies within the project. In particular, it has been intensively
tested and used by two of the partners in impact studies. Feedback
from these partners and other users has helped to shape the
development of the portal and the accompanying user guidance.

Electricité de France (EDF) has assessed the skill of seasonal
forecasts over France in order to forecast electric power
consumption (maximum and minimum temperatures for 26
French cities were considered), and hydropower production
(precipitation and temperature in nine watersheds). The portal
allowed the testing of different large-scale predictors, areas, and
statistical downscaling methods. The analogue methods turned
out to be the best compromise (easy and fast to implement).When
using ERA-40 data, downscaling outperformed the direct model
outputs, and adding extra predictors always improves the skill.
However, when considering DEMETER and ENSEMBLES
hindcasts (Figure 6.20), the picture is much more complicated
and results depend on season and the local parameter being
forecast. In particular, the best predictor for a given target variable
is not the same for all seasons.

The Joint Research Centre (JRC) has tested the skill of statistical
downscaling techniques (as compared with other alternatives)
and produced regional climate change scenarios on a grid (the
50 km JRC grid) suitable for modelling crop yield production
(see Section 9).

The ENSEMBLES downscaling portal has also been used to run
sensitivity studies focusing on specific scientific issues, such as
the robustness and stationarity of statistical downscalingmethods
(see Section 6.3.5). It is also being used to downscale the E-OBS
dataset (Section 8) for the whole European domain, allowing
further direct comparison of statistical and dynamical downscaling
(see Section 6.3.3).

Figure 6.19: The ENSEMBLES downscaling portal.



6.6 Meeting user needs

6.6.1 Introduction

The RT2B task of providing information on regional climate
change as input for impact assessments, together with the
central position of RT2B in ENSEMBLES (see Figure 1.1),
means that two-way communication with users (particularly
those in RT6 – see Section 9) was vital. It was achieved through
various formal and informal means, including a questionnaire
on the ‘tailoring of ENSEMBLES regional climate scenario
outputs to user needs’.

The responses to this questionnaire reflected some of the
communication and technical difficulties in the move towards
probabilistic projections – in some cases raising issues that
some users had not yet had an opportunity to think through.
And while it indicated that many users were willing to explore
the potential of using probabilistic outputs such as PDFs,
CDFs and climate response surfaces, it also demonstrated a
continuing need to provide time-series inputs to impacts
models (see Section 9.2.2). Thus, outputs from RT2B are
available as daily time-series as well as in probabilistic
formats. Provision of documentation, recommendations and
guidance is also an important outcome of the regional work
in ENSEMBLES and is the focus of increased attention in the
closing stages of the project.

Access to RT2B regional data, deliverables and other
documentation is provided through three portals.
• The Regional Scenario Web Portal -
http://www.cru.uea.ac.uk/projects/ensembles/ScenariosPortal/

• The ENSEMBLES downscaling portal –
http://www.meteo.unican.es/ensembles/ (see Section 6.5.2)

• The DMI RCM data archive – http://ensemblesrt3.dmi.dk/
(see Section 5.2.3).

6.6.2 Provision of information at different spatial
scales

It is evident, from the previous sections of this report, that the
ENSEMBLES work on downscaling has been very diverse,
drawing on different types of input data, using a number of
different methodologies, and working at a number of different
spatial scales. Thus the outputs reflect this diversity, as well
as the diverse requirements of users (see Section 6.6.1).

This diversity is demonstrated in the four sets of PDFs of
temperature and precipitation changes at 2021–2050 shown
below for the Middle European location of Prague. PDFs 1
represent changes over the Middle Europe sub-region and are
based entirely on GCM output – in this case sampling from a
large part of the CMIP3 range (eighteen GCMs). PDFs 2 also
represent areal changes, although this time for a 25 km grid
box. In this case, only three GCMs are sampled, but sixteen
RCM runs are used. PDFs 3 and 4 are both representative of
point locations, since the statistical models are trained on
station data for Prague. However, they sample different types
of uncertainty: PDFs 3 focus on GCM-RCM uncertainty,
together with some representation of natural variability
coming from the stochastic character of the weather
generator; while PDFs 4 focus on uncertainty arising from
the choice of statistical downscaling model.

Given these different approaches, it is not surprising that
the changes indicated by the different PDFs differ in some
respects, although some common characteristics are
evident. The mode of all temperature distributions, for
example, is positive – and all extend slightly into the
negative range in at least some seasons. The temperature
changes tend, however, to be somewhat larger for PDFs 2–
4 (which include downscaling) than for PDF 1 (based only
on GCMs), and largest where statistical downscaling is
used (PDFs 3 and 4). For precipitation, the modes of most
distributions are slightly positive (with the exception of
spring PDF 3), but there are differences in the shapes of the
distributions, particularly in summer. PDF 1, for example,
is negatively skewed (with a long left-hand tail) in summer,
while PDF 2 is positively skewed (with a longer right-hand
tail). In general, the precipitation PDFs reflect the location
of Prague – close to the boundary between increased
precipitation over northern Europe and decreased
precipitation to the south (see, for example, Figure 6.5).
Hence there is relatively little difference in the precipitation
PDFs for different seasons and the modes of the
distributions lie closer to zero than they would for regions
with stronger and more robust signals.

It is clear that none of the PDFs shown here sample the full
range of upstream or downscaling uncertainties (see Section
6.2). Thus they should all be considered as ‘subjective’ rather
than ‘objective’ (as in the case of probabilities associated with
dice throwing) probabilities, and it is important for any user
to know the underlying inputs, assumptions and methods. In
this context, it should also be stressed that all the PDFs shown
here are conditional on the A1B emissions scenario. The
ENSEMBLES work has demonstrated the benefit of using
probabilistic approaches to explore the uncertainties (and
certainties) in regional climate change projections.
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Figure 6.20: Comparison of the skill of raw model (dark green) and
statistically downscaled values (using two different upper-air
predictors: temperature (T) and specific humidity (Q) at 850 hPa) of
temperature and precipitation for nine French watersheds. Raw values
are from the ENSEMBLES stream 2 seasonal hindcasts (see Section
6.4). The skill metric is the ROC skill area (RSA) for the upper terciles –
higher positive values indicate greater skill. The horizontal axis shows
the (initialization month, initial–final lead months). Thus, for initialization
in February and 2–4 lead months (first set of bars), downscaling
improves the forecast skill, with specific humidity slightly more skilful
than temperature as a downscaling predictor. For the second set of
results, however, downscaling actually reduces the forecast skill.
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Nonetheless, there is a potential danger in that the underlying
assumptions tend to be harder to explain and understand than
in the case of single deterministic scenarios. Just because a
PDF appears wide, for example, does not mean that all the

uncertainties have been extensively or uniformly sampled.
Therefore good communication and user guidance are
essential in ensuring that such projections are used
appropriately.

PDFs 1: See Section 6.2.3
Location: Mid-Europe PRUDENCE/Rockel region
Input data: 18 CMIP3 GCM runs (interpolated to 1 degree grid)
Method: Revised reliability ensemble averaging (REA) method
Uncertainties considered: Multiple GCMs (18) with weighting

PDFs for change in temperature (left) and precipitation (right) for 2021–2050 minus 1961–1990

PDFs 2: See Section 6.2.3
Location: Nearest 25 km grid point to Prague
Input data: 16 RCMs
Method: Gaussian kernel method. RCMs weighted using RT3 Wprod weights
Uncertainties considered: Multiple GCMs (3) and RCMs (16) with weighting
Winter (blue), Spring (green), Summer (red), Autumn (yellow). Temperature change in °C, precipitation change in mm/day.

Temperature Precipitation



6.6.3 Case studies and applications

Statistically and dynamically downscaled outputs have been
used in a number of RT2B regional case studies, many focusing
on specific impact sectors and applications and with local
stakeholder involvement. These case studies are summarised in
Section 6.6.4 – more detailed results and descriptions of the
techniques used are available from the Regional Scenario Web
Portal (see Section 6.6.1).

Work has also been undertaken for Europe as a whole. For
example, future changes in heat-wave characteristics have been
analysed based on the ENSEMBLES RCM results (Fischer and
Schär, 2009b). Different RCMs driven by different GCMs yield
qualitatively consistent results, which are also in line with those
from PRUDENCE (Fischer and Schär, 2009a). The results
indicate pronounced increases in temperature variability on all
time-scales (interannual, seasonal, subseasonal, diurnal) in
south-central Europe. Important increases in heat-wave
amplitude, frequency and duration are found in large parts of

the study area, especially in southern Europe (Figure 6.21). An
analysis of health-specific indicators suggests a strong need for
adaptation measures by the year 2050, particularly in low-
altitude Mediterranean river basins.

Work has also been undertaken on deep cyclones and wind
storms. For example, the characteristics of large-scale flow
associated with the occurrence of wind storms based on
circulation weather type (CWT) cyclone tracking approaches
have been analysed with reanalysis (Donat et al., 2009a) and
multi-model (Donat et al., 2009b) data. For central Europe, the
majority of the storm days are connected with westerly flow.
The ENSEMBLES GCM ensemble reproduces the observed
class frequencies reasonably well, although overestimating the
occurrence of westerly flow and underestimating anticyclonic
situations (Donat et al., 2009b). For the future under the A1B
scenario, a significantly increased frequency of westerly flow
and also of storm days is indicated. Frequencies of cyclonic and
easterly flow are decreased in the climate projections for the
end of the 21st century (Figure 6.22).
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PDFs 4
Location: Prague, models trained on station data
Input data: Predictors from ECHAM5 GCM
Method: Three statistical downscaling methods (analogues, regression with circulation patterns and regression with weather types)
run using the ENSEMBLES downscaling portal (see Section 6.5.2) Gaussian distribution fitted to outputs to produce PDFs
Uncertainties considered: Multiple (3) downscaling methods

PDFs 3: See Section 6.2.2
Location: Prague, weather generator trained on station data; RCM change factors from nearest 25 km grid box
Input data: 17 RCMs
Method: Stochastic weather generator with change factors from 17 RCMs, with RT3 Wprod weighting
Uncertainties considered: Multiple GCMs (5) and RCMs (17) with weighting and one statistical downscaling method with natural variability
Winter (blue), Spring (green), Summer (red), Autumn (yellow).
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Analysis of Northern Hemisphere cyclone track densities reveals
a decreased total number of cyclone systems. Considering only
extreme cyclones (i.e., the 5% strongest in terms of Laplacian
pressure), hot-spots of increased activity are found over the eastern
NorthAtlantic and easternNorth Pacific (Leckebusch et al., 2008).
The significance of this signal can be increased by weighting the
different GCMs according to their ability to reproduce the
observed climatology of cyclone tracks (Figure 6.23).

Extreme wind speeds and related loss potentials have been
calculated based on the ENSEMBLES GCM and RCM
simulations. In addition to an estimation of changed risk of
storm losses under future climate conditions, in particular, the
effects of dynamical downscaling on the storm loss calculations
were investigated. The results from these applied analyses are
presented in Section 9.

Figure 6.21: Projected average number of summer days exceeding the apparent temperature (heat index) threshold of 40.7°C (105F). Ensemble
mean summer (JJA) days as simulated by five ENSEMBLES RCM runs (MPI, KNMI, HC, ETH, C4I) are shown.

Figure 6.22: Relative frequency of circulation weather types in ERA-40 and ENSEMBLES 20th century and A1B GCM simulations.

Figure 6.23: Changes in winter (ONDJFM) cyclone track density at the end the century for (a) all systems and (b) extreme systems. Contours
show the frequency change and coloured shading indicates the statistical significance level.



76

6 Downscaling methods, data and tools for input to impacts assessments

6.6.4: Illustrative examples of case studies in Research Theme 2B: Downscaling methods, data and tools for
For more details on the RT2B case studies see: http://www.cru.uea.ac.uk/projects/ensembles/ScenariosPortal/
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7.0 Introduction

The purpose of Research Theme 4 (RT4) was to advance
understanding of the basic science issues at the heart of the
ENSEMBLES project, focusing on the key processes that
govern climate variability and change, and that determine the
predictability of climate. Particular attention was given to
understanding linear and non-linear feedbacks that may lead to
climate ‘surprises’, and to understanding the factors that govern
the probability of extreme events. Improved understanding of
these issues will contribute significantly to the quantification
and reduction of uncertainty in seasonal to decadal predictions
and projections of climate change.

RT4 exploited the ENSEMBLES integrations (stream 1)
performed in RT2A as well as undertaking its own
experimentation to explore key processes within the climate
system. It was working at the cutting edge of problems related
to climate feedbacks, the interaction between climate variability
and climate change – especially how climate change pertains to
extreme events, and the predictability of the climate system on
a range of time-scales. The statistical methodologies developed
for extreme event analysis are new and state-of-the-art. The
RT4-coordinated experiments, which have been conducted with
six different atmospheric GCMs forced by common time-
invariant sea surface temperature (SST) and sea-ice fields
(removing some sources of inter-model variability), are
designed to help to understand model uncertainty (rather than
scenario or initial condition uncertainty) in predictions of the
response to greenhouse-gas-induced warming. RT4 links
strongly with RT5 on the evaluation of the ENSEMBLES
prediction system and feeds back its results to RT1 to guide
improvements in the Earth system models and, through its
research on predictability, to steer the development of methods
for initialising the ensembles.

7.1 Feedbacks and climate surprises

7.1.1 Radiative feedbacks

Radiative feedbacks are known to make a major contribution
to global temperature change in response to an external forcing,
but how much the different feedback processes contribute to the
temperature change estimate and to its spread was not
quantified. A method was proposed to quantify the contribution
of the different radiative feedbacks to the equilibrium or

transient temperature change, and this was applied to the
simulation results of twelve coupled GCMs (Dufresne and
Bony, 2008). Results showed that the water vapour plus lapse
rate (WV+LR) feedback had the largest contribution to the
multi-model mean of the temperature increase, while the cloud
feedbacks constituted by far the primary source of spread of
both equilibrium and transient climate responses simulated by
GCMs (Figure 7.1). Surprising for such an idealised experiment
was the quite large contribution of the forcing to the spread.
Another important result was that the ratio between the
temperature increase due to each feedback and the global
temperature increase was the same for both equilibrium and
transient runs. The origin of the large spread due to cloud
feedback has been identified: it is mainly due to low-level
clouds that cover the largest part of the ocean (Bony and
Dufresne, 2005; Bony et al., 2006; Webb et al., 2006).

In order to reduce the spread of climate feedback estimated by
GCMs, and therefore in climate change projections, a strategy
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Figure 7.1: For simulations where CO2 increases by 1%/yr, at the
time of CO2 doubling, (a) multi-model mean ±1 standard deviation
(thick line) and 5–95% interval (thin line) of the equilibrium
temperature change (ΔTs), and contributions to this temperature
change associated with the Planck response, combined water
vapour and lapse rate (WV+LR) feedback, surface albedo feedback,
cloud feedback and ocean heat uptake; (b) inter-model standard
deviation of the temperature change estimates associated with the
radiative forcing, the Planck response and the various feedbacks
normalised by the inter-model standard deviation of the equilibrium
temperature change ΔTs shown in (a).



was developed on how to constrain water vapour and cloud
feedback processes using observations and process studies. This
main objective, in common with the Cloud Feedback Model
Intercomparison Project (from WGCM/WCRP) and the
ENSEMBLES project, gives significant inputs to the CFMIP
phase 2 plans; for instance through the organisation of a joint
CFMIP/ENSEMBLES workshop held in Paris in April, 2007.
Within this framework, the importance of developing specific
tools to make quantitative comparisons between model results
and satellite observations was highlighted. A CFMIP
Observational Simulator Package (COSP) has been developed,
which currently includes five satellite instruments. The
ENSEMBLES project contributes to two of them – the Calipso
and Parasol simulators (Chepfer et al., 2008). To ensure the
consistency between the outputs of the Calipso simulators and
the measurements of the Calipso satellite, a specific ‘GCM-
Oriented Calipso Cloud Product’ (GOCCP) has been developed
(Chepfer et al., 2009). This COSP simulator will be used by
climate models when running the simulations recommended by
the CMIP-5 project to support the preparation of the IPCC Fifth
Assessment Report. This work was done in close collaboration
with RT5.

7.1.2 Climate-carbon feedbacks

Global models of the coupled climate-carbon system have
shown that climate change induces a reduction in the capacity
of both land and ocean to absorb atmospheric CO2 (e.g., Cox
et al., 2000; Friedlingstein et al., 2001; Dufresne et al., 2002).
Consequently, these reduced sinks act to further build up
atmospheric CO2 concentrations, by an estimated 20–220 ppm
by 2100 (from the Coupled Climate-Carbon Cycle Model
Intercomparison Project, ‘C4MIP’; Friedlingstein et al., 2006),
which corresponds to an additional climate warming of 0.1–
1.5°C. This has major policy implications for climate change
mitigation and reduces the ‘permissible’ emissions to achieve
CO2 stabilisation (Jones et al., 2006).

Most C4MIP models attribute their carbon-climate change
response to (1) reductions in land carbon uptake in the tropics
and a widespread, climate-driven, loss of soil carbon, and (2) a
decreased CO2 uptake by the oceans, caused both by ocean
warming and by a shrinking volume of the surface mixed layer.
Nevertheless, the broad range in carbon cycle–climate feedback

among models reflects divergences in model representations of
basic carbon cycle processes and their interactions (e.g., Le
Quéré et al., 2005; Sitch et al., 2008).

Cadule et al. (2009) defines new metrics based on various
characteristics of atmospheric CO2 at three different time-scales:
1. the long-term trend of atmospheric CO2 (TR), which

informs on the model’s ability to simulate realistic land and
ocean carbon sinks over the historical period;

2. the modelled atmospheric CO2 seasonal cycle (SC), which,
particularly at Northern Hemisphere atmospheric CO2

stations, constrains the model’s simulation of the seasonal
activity of continental fluxes: vegetation growth in spring
and summer, and vegetation decay in autumn;

3. the interannual variability of the atmospheric CO2 (IAV) as
a constraint on the model’s capability to simulate realistic
ENSO climate patterns and impacts on land and ocean
carbon fluxes. For the seasonal and interannual variability,
Cadule et al. (2009) evaluated the model’s capability to
represent the CO2 signal, and then evaluated the sensitivity
of the atmospheric CO2 to climatic fluctuations for these
two time-scales.

These new metrics were applied to three C4MIP models:
HadCM3LC, IPSL-CM2-C and IPSL-CM4-LOOP (Figure 7.2).
Results confirm that multiple time-scales are needed to evaluate
models, e.g., because the best model on seasonal scales did not
outperform the others on the interannual time-scale. A further
advantage of defining single metrics is that it allows for testing
future structural improvements of models and the inclusion of
new processes in the same rigorously defined framework.
Indeed, Cadule et al. (2009) demonstrated how the new-
generation IPSL model (IPSL-CM4-LOOP) outperforms the
older IPSL-CM2-C on all metrics.

7.1.3 Interactions between Atlantic meridional
overturning circulation, sea ice and climate

Detailed analysis has been performed on ENSEMBLES stream
1 climate change simulations performed with the third version
of the CNRM (Centre National de Recherches
Météorologiques) and the fourth version of the Institut Pierre-
Simon Laplace (IPSL-CM4) global atmosphere–ocean–sea ice
coupled models. Most state-of-the art global coupled models
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Figure 7.2: (a) Atmospheric CO2 concentration at Point Barrow (BRW), Alaska, simulated by the three coupled models: HadCM3LC (red),
IPSL-CM2-C (blue) and IPSL-CM4-LOOP (green). Observed CO2 concentration is shown in black. (b), (c) Same as (a) for Hawaii, and the
South Pole (SPO), respectively.
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simulate a weakening of the Atlantic meridional overturning
circulation (MOC) in climate change scenarios, but the
mechanisms leading to this weakening are still being debated.
The analysis of the A1B scenario experiment run with CNRM-
CM shows that global warming leads to a slowdown of North
Atlantic deep ocean convection and thermohaline circulation
south of Iceland. This slowdown is triggered by a freshening of
the Arctic Ocean and an increase in freshwater outflow through
Fram Strait. Sea-ice melting in the Barents Sea induces a local
amplification of the surface warming, which enhances the
cyclonic atmospheric circulation around Spitzberg. This
anticlockwise circulation forces an increase in Fram Strait
outflow and a simultaneous increase in ocean transport of warm
waters toward the Barents Sea, favouring further sea-ice melting
and surface warming in the Barents Sea. Additionally, the retreat
of sea ice allows more deepwater formation north of Iceland,
and the thermohaline circulation strengthens there. The
transport of warm and saline waters towards the Barents Sea is
further enhanced, which constitutes a second positive feedback.
The whole mechanism is summarised in Figure 7.3.

The mechanisms influencing the Arctic freshwater balance in
response to anthropogenic greenhouse gas forcing were
investigated in 20th and 21st century climate simulations run
with IPSL-CM4. In these simulations, the Fram Strait outflow,
which is an important source of freshwater for the northern
North Atlantic, experiences a rapid and strong transition from a
weak state towards a relatively strong state during 1990–2010
(see Figure 7.4). Arzel et al. (2008) suggest that this climate
shift is triggered by the retreat of sea ice in the Barents Sea
during the late 20th century. In agreement with CNRM-CM
simulations, sea-ice reduction initiates a positive feedback in
the atmosphere–sea ice–ocean system that alters both the
atmospheric and oceanic circulations in the Greenland–Iceland–
Norwegian (GIN) Barents Sea sector. Around the year 2080,
the model simulates a second transition threshold beyond which
the Fram Strait outflow is restored to its original weak value
(see Figure 7.4). The long-term freshening of the GIN Seas is
invoked to explain this rapid transition. It is further found that
the mechanism of interannual changes in deep mixing differ

fundamentally between the 20th and 21st centuries. This
difference is caused by the dominant influence of freshwater
over the 21st century. In the GIN Seas, the interannual changes
in the liquid freshwater export from the Arctic Ocean through
Fram Strait combined with the interannual changes in the liquid
freshwater import from the North Atlantic are shown to have a
major influence in driving the interannual variability of the deep
convection during the 21st century. South of Iceland, which is
the other region of deepwater renewal in the model, changes in
freshwater import from the North Atlantic constitute the
dominant forcing of deep convection on interannual time-scales
over the 21st century.

7.2 Natural variability and regional climate

7.2.1 Understanding the land–sea warming contrast,
and changes in the global hydrological cycle in
response to increasing greenhouse gases

Climate model simulations consistently show that, in response to
greenhouse gas forcing, surface air temperature over land
increases more rapidly than over sea. Analysis of the
IPCC/CMIP3 model integrations shows a land–sea warming ratio
ranging from 1.36 to 1.84 (Sutton et al., 2007). Understanding

Figure 7.3: Summary of the feedback loop mechanism suggested by
the analysis of the ENSEMBLES stream 1 SRES-A1B scenario run
with CNRM-CM (Fig. 16 from Guemas and Salas-Mélia, 2008a).

Figure 7.4: Time-series of (a) Fram Strait volume flux and (b) liquid
freshwater export at Fram Strait in the pre-industrial experiment (thin
line) and in the experiment covering the 20th century and the SRES
A1B scenario over the 21st century (thick line) run with IPSL-CM4. A
5-year running mean has been applied (Fig. 6 from Arzel et al., 2008).



the factors that govern this warming contrast is an important issue
for climate projections, both because of the direct impacts of
regional warming, and because of interactions between the land–
sea warming contrast and atmospheric circulation on local and
regional scales. The mechanisms responsible for enhanced land
surface warming in the response to increased CO2 concentration
have been elucidated using the HadAM3 model (Figure 7.5).
Results indicate that warming over land may be viewed partly as
a direct response to CO2 change, and partly as an indirect response
to warming of the sea. The processes responsible for the land
surface warming in response to different forcings involve a local
positive feedback between warming, relative humidity and cloud
cover. The reduction of cloud cover enhances land surface
warming in response to both CO2 change and imposed SST
change through its effect on surface short-wave radiation. In
addition to the land surface warming induced by the CO2 radiative
effect, the CO2-induced stomatal response inhibits
evapotranspiration, favouring near-surface warming, especially
in summer when evapotranspiration is strongest. The increased
net downward short-wave radiation due to cloud changes further
amplifies this near-surface warming. Results imply that the
change in stomatal resistance in land surface schemes among
different models in response to CO2 change is one factor that
might be responsible for the uncertainty of the land–sea warming
ratio seen in IPCC/CMIP3 models. Analysis of warming ratios
in the RT4-coordinated experiments shows that the range of
warming ratios (1.54–1.78) is smaller than that obtained from
IPCC/CMIP3 models. This indicates that the uncertainty of the

land–sea warming ratio is reduced in the atmospheric models
forced by the same SST change, implying that another factor
responsible for the spread of the land–sea warming ratio in
response to greenhouse gas changes in IPCC/CMIP3 models is
the uncertainty of the magnitude and spatial pattern of SST
change. (See ENSEMBLES Deliverable 4.2.3 available at: http://
www.ensembles-eu.org/deliverables.html.)

Understanding the response of the global hydrological cycle to
recent and future anthropogenic emissions of greenhouse gases
and aerosols is a major challenge for the climate modelling
community. Using eight IPCC/CMIP3 models, it has been
shown that the main uncertainties of the global hydrological
changes originate from the tropics, where even the sign of the
zonal mean precipitation change remains uncertain over land
(Douville et al., 2006). Given the large interannual fluctuations
of tropical precipitation, it is then suggested that the ENSO
variability can be used as a surrogate of climate change in order
to better constrain the model response. The study indicates that
uncertainties in the 21st century evolution of these
teleconnections represent an important contribution to the
model spread, thus emphasising the need to improve the
simulation of the tropical Pacific variability so as to provide
more reliable scenarios of the global hydrological cycle. It also
suggests that validating the mean present-day climate is not
sufficient for assessing the reliability of climate projections, and
that interannual variability is another suitable – and possibly
more useful – candidate for constraining the model response.
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Figure 7.5: Annual mean surface air temperature changes in HadAM3 in response to (a) SST+CO2 change, (b) SST change, (c) CO2 radiative
forcing change, and (d) the change in stomatal resistance in response to doubled CO2 (Dong et al., 2009a, 2009b) . The response to SST+CO2

change reproduces many features of the land–sea warming contrast seen in the coupled model (a). A land–sea warming ratio of 1.34 with SST
forcing only (b) suggests that direct CO2 forcing is not necessary for enhanced land warming. (c) and (d) show that the purely radiative effects of
CO2 change and the reduction in stomatal resistance both contribute to warming over land.
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7.2.2 Tropical climate variability, dynamics of
monsoons, and their response to greenhouse
gas forcing

Firstly attention was devoted to the effects of the model
resolution on the simulations of the El Niño–Southern
Oscillation (ENSO) and its interaction with Asian monsoons. It
has been demonstrated that simulations of the MJO, ENSO, and
the ENSO–monsoon interaction are significantly improved in a
high-resolution model (Cherchi and Navarra, 2007; Navarra et
al., 2008) and it has been suggested that, at high resolution, a
good simulation of tropical instability waves in the cold tongue
region of the East Pacific has led to better ocean mixing as well
as a stronger coupled response in the atmosphere (Figure 7.6).As
a result, the east–west temperature gradient is better simulated
and the seasonal cycle of the East Pacific is much improved.
Both aspects have direct consequences for the representation of
the MJO and El Niño in the model. The implication of all these
results is that high resolution coupled simulations do provide
significant improvements in model performance, both with
respect to the mean climatology and modes of variability.

The response of El Niño to climate change has also been
investigated (Latif and Keenlyside, 2008; Guilyardi et al.,

2009). It has been concluded that there is no consensus among
the current IPCC/CMIP3 models on the sense of future changes
in ENSO, although no models exhibit large changes in ENSO
behaviour (Guilyardi et al., 2009). These studies have provided
a good basic set of diagnostics for characterising El Niño in
coupled models, and its response to climate change, and have
concluded that there is an urgent need to better constrain ENSO
feedbacks in models in order to provide reliable climate
projections. The teleconnection between ENSO and Indian
summer monsoons remains robust in response to external
forcing (Turner et al., 2007).

The teleconnections between the West African monsoon and the
tropical sea surface temperature at the interannual to multi-
decadal time-scales have been assessed based on twelve
IPCC/CMIP3 models (Joly et al., 2007; Joly and Voldoire,
2009). The simulations of the 20th and 21st centuries do not
show any significant change in the pattern of the
teleconnections, but the dominant ENSO teleconnection
exhibits a significant strengthening.

It has been identified that the southern tropical Atlantic Ocean
SST anomalies are the main driver of deviations in the Indian
monsoon rainfall (IMR) from the (linearly) ENSO-forced
component (Kucharski et al., 2007, 2009). This finding also has
important implications for seasonal predictions of IMR. Using
a subset of the IPCC/CMIP3 20th century integrations, it has
been further shown that the increase in greenhouse gases in the
20th century has had little influence on the decadal IMR
variability (Kucharski et al., 2008).

The possible influence of the winter/spring Eurasian snow cover
on the subsequent Indian summer precipitation has been
revisited using both observations and a subset of CMIP3
simulations (Peings and Douville, 2009; Turner and Slingo,
2009c). Observations suggest a link between an east–west snow
dipole over Eurasia and the Indian summer monsoon
precipitation. However, this relationship is neither statistically
significant nor stationary over the last 40 years. The maximum
covariance analysis of the 20th century, CMIP3, indicates that
some models (including HadCM3) do show an apparent
influence of the Eurasian snow cover on the Indian summer
monsoon precipitation, but the patterns are not the same as in the
observations. Moreover, the apparent snow–monsoon
relationship generally suggests a too strong El Niño–Southern
Oscillation teleconnection with both winter snow cover and
summer monsoon rainfall rather than a direct influence of the
Eurasian snow cover on the Indian monsoon. Further analysis
of the HadCM3 control simulation shows that this model is
capable of simulating weakened monsoon conditions in the
absence of ENSO, following heavy snow over either north/west
Eurasia or the Himalaya/Tibetan Plateau (Turner and Slingo,
2009c). Idealised spring snow forcing conditions are tested
separately for north/west Eurasia and the Himalaya/Tibetan
Plateau regions in the HadAM3 model forced with
climatological SST. In the HadAM3 model, forcing from the
Himalaya region is found to dominate, in support of the
Blanford hypothesis, whereby delayed snow melt leads to a
reduction in surface sensible heating and consequently a
reduction in the strength of the tropospheric temperature
gradient. Thus Indian rainfall suffers, particularly during the
early part of the summer season.

Figure 7.6: Snapshot of the SST (shaded) and the divergence of the
surface stresses (contours) for pentads. Upper panel: low-resolution
model (T30). Lower panel: high-resolution model (T106). The ocean
model readily produces tropical instability waves in both models at
T30 and at T106; however, the results show that the atmosphere
reacts to the tropical instability waves (TIW) only at T106. The low-
resolution model is effectively decoupled from the atmosphere at this
spatial scale and there is no signature of the TWI in the atmosphere.
The T106 shows the typical signature for the TWI in an area close to
the equator, between 5N and 5S. A consequence of the coupling at
the scale of the TWI is that the average surface stress over an
area,such as the NINO3 area, is decreased by the coupling (after
Navarra et al., 2008).



The effect of climate change on subseasonal precipitation
extremes and active-break cycles of the Indian monsoon in a
coupled GCM has also been investigated (Turner and Slingo,
2009a). The results suggest an increased probability of
subseasonal extremes of rainfall over India, and changes in
magnitude beyond changes in the mean alone. Active-break
cycles of monsoon rainfall are found to intensify against the
climatological seasonal cycle, although there is little evidence
that break events are of longer duration, more frequent, or more
severe in absolute terms (Figure 7.7). The analysis of the change
in spatial distribution and magnitude of the heaviest extremes of
daily monsoon rainfall over India in response to climate change
using IPCC/CMIP3 models suggests that convection schemes
are likely to play an important role for the uncertainties in the
projected extreme precipitation change (Turner and Slingo,
2009b).

7.2.3 Extratropical climate variability and its
response to greenhouse gas forcing

The North Atlantic Oscillation (NAO) is the primary variability
mode of the North Atlantic sector. The NAO variability not only
influences the mean winter climate over Europe but also
influences climate extremes (e.g., Scaife et al., 2008) and ocean
circulation (Bellucci et al., 2008). The possible changes at the end
of the 21st century in the North Atlantic European winter large-

scale atmospheric circulation due to anthropogenic influence have
been analysed using IPCC/CMIP3 simulations (Ensembles
Milestone 4.2.3: available at: http://www.ensem bles-eu.org).
Most models show a significant increase in the occurrence
frequency of the NAO+ and Atlantic Ridge weather regimes and
a decrease in the NAO− regime while changes in blocking
occurrence vary strongly between models (Figure 7.8). Results
also suggest that changes in circulation (as represented by weather
regimes) can explain a large proportion of the winter precipitation
changes as simulated by the IPCC/CMIP3 multi-model ensemble
mean (strong increase over northern Europe and Scandinavia in
particular, decrease over the Mediterranean area).

The stratosphere and troposphere influence each other via
propagating temperature and wind signals (e.g., Andrews et al.,
1987). Modelling studies show that the strength of the
stratospheric circulation influences the long-term variability of
the NAO (Scaife et al., 2005), emphasising the need to
reproduce stratospheric variability to fully simulate surface
climate in the North Atlantic sector. The role of representation
of the stratosphere on the changes in extratropical circulation
and storm tracks in response to climate change has been
investigated (Huebener et al., 2007). Results highlight the need
to use stratosphere-resolved models to project climate change
and variability, since simulated sudden stratospheric warmings
are improved in the stratosphere-resolved model (Huebener et
al., 2007).
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Figure 7.7: (a), (b) The differences (2×CO2 minus 1×CO2) in precipitation associated with active-break cycles in HadCM3: (c) and (d) the anomalies
with the change in seasonal cycle removed. Units are mm/day. In the difference plots, stippling indicates significance at the 95% level using
Student’s t-test. Results (c) and (d) indicate that flooding and drought associated with the active-break cycle of Indian summer monsoon will
become more intense in response to the increase in greenhouse gas concentrations.
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7.3 Extreme weather and climate events

7.3.1 Warm extremes and heat waves

The occurrence of specific climate extremes in the Mediterranean
region as well as the relationships with large-scale circulation
have been studied using three transient ENSEMBLES regional
climate model (RCM) simulations (Tolika et al., 2009). The
RCMs are first evaluated against observations for the control
period 1961–1990, then seven extreme climate indices are
calculated, and finally their trends are analysed over the entire
time period, which is 1961–2050 for two models and 1961–2100
for the third model. All models marked a shift towards warmer
climate, with the high temperatures getting warmer in the future
(Figure 7.9). The models also indicated an increase in summer
low temperatures. With respect to precipitation indices, the
models show similar present and future spatial patterns of the
extreme precipitation amounts in winter, with the most extreme
precipitation observed along the western borders of all peninsulas
of the northern Mediterranean. All three models compare better
and are better evaluated for temperature extremes, while showing
less clear results for precipitation extremes.

Extreme climate events over north-west Europe and Eurasia are
typically related to the occurrence of blocking situations, and
specific methodologies have been developed and tested to study
these relationships (e.g., Carril et al., 2008). The intraseasonal
variability of those patterns is related to the amplitude of the
blocking, the relative location of the action centre, and the
wavetrain of anomalies downstream or upstream of the blocking.
During June and July, blocking situations which give extremely
hot climate conditions over north-west Europe are also associated
with cold conditions over the eastern Mediterranean sector. The
Euro-Mediterranean region is a transition area in which
extratropical and tropical systems compete, influencing the
occurrence of climate events: blockings tend to be related to
extremely hot months during June, while baroclinic anomalies
dominate the variability of the climate events in July andAugust.
Climate model simulations are able to capture the extreme-related
variability in July, and climate change projections indicate that
the most sensitive location for changes in extremes is north-west
Europe.

Amethodology to diagnose the relationship between large-scale
circulation anomalies and the occurrence of local weather regimes
has also been developed (Panja and Selten, 2007). The method,
referred to as extreme associated functions (EAF), was applied to
present (1958–2000) observed and simulated local daily summer
temperature time-series in Europe to validate the model, and to
future (2050–2100) simulated time-series to assess the effect of
changes in the circulation on the temperature extremes. To
illustrate the methodology, Figure 7.10 shows results for the
Netherlands. The EAF pattern is characterised by a high-pressure
anomaly slightly to the north of the Netherlands and summarises
flow patterns, with advection of warm air from the south-east as
well as flow patterns without advection but subsidence conditions
in clear, sunny skies. The model results compare very well with
observations. The scatter plot shows a strong relation between
the amplitude of this pattern and the local temperature. This
relation changes in the future; the same pattern amplitude in future
is associated with warmer temperature extremes primarily due to
a decrease in the latent heat flux as soil water availability is

Figure 7.8: Change in the occurrence of the standard winter weather
regimes for the North Atlantic European sector (units are in days).
Each bar represents an individual model (with the bar labelled “IPCC
ensemble” being the multi-model mean). Each colour represents a
different weather regime. Most models show a significant increase in
the occurrence frequency of the NAO+ and Atlantic Ridge weather
regimes and a decrease in the NAO− regime, while changes in
blocking occurrence vary strongly between models.

Figure 7.9: Statistically significant trends of the 90th percentile for
maximum temperature (TXQ90) for summer as estimated by the three
examined models (trends are statistically significant at the 0.05 level of
significance).



reduced. The pattern itself, as well as its probability distribution,
does not change much. Larger simulated changes in the EAFs are
found for locations in southern Europe.

7.3.2 Tropical cyclones

Tropical cyclones (TC) are one of the most important sources of
extreme weather in the tropics, and understanding how extreme
weather events will change under future climate changes is of great
importance to society. How the characteristics - intensity, fre-
quency, and duration - of TCs will change under future climate
change was investigated by analyzing coupled model simulations
and performing high-resolution (60 km) atmospheric model simu-
lations.

There has been significant debate on the impact of global warm-
ing on tropical cyclones. Much of this has been stimulated by the
anomalously strong hurricane activity in the Atlantic sector dur-
ing recent years. Several studies in ENSEMBLES have investi-
gated different aspects of how TC will respond to global warm-
ing, including the role of natural internal climate variability
(Bengtsson et al., 2007; Latif et al., 2007; Gualdi et al., 2008;
Royer et al., 2009). These studies indicate, in agreement with other
recently published studies, that under global warming there will
be an overall decrease in the frequency of TC, resulting from the
increase in static stability and reduced vertical circulation.Aclear
increase in the number of intense tropical storms was found in the
high-resolution simulations. This is due to the increase in tem-
perature and water vapour, which provide more energy for the
storms once they have developed. There is disagreement over the
predicted regional changes, likely due to uncertainties in the trop-
ical SST response to global warming.

Royer et al. (2009) analysed TC genesis in fifteen coupled climate
models running the IPCC CMIP3 simulations for the 20th century
and for scenario A2, among which were the climate models used

in ENSEMBLES stream 1 simulations. They showed that most
of the models simulate rather realistic patterns of cyclogenesis for
the current climate. The cyclogenesis index shows inter-decadal
fluctuations and long-term trends. In scenario A2 the patterns of
response of cyclogenesis at the end of the 21st century differ
according to the ocean basins and models. While, in a few ocean
basins, such as the Indian Ocean, the majority of models compute
an increasing trend in TC genesis, the response is less coherent in
other basins, where some models give a decreasing trend. The lack
of coherence of the TC genesis response to future climate change
can be associated with the different response patterns of the ocean
sea surface temperatures (SST) simulated by the coupled models,
particularly over the equatorial Pacific (discussed in Section 7.2.2).

The impact of non-local SST changes on TC was highlighted in the
study of Latif et al. (2007). This study showed that the tempera-
ture difference between the tropical North Atlantic and the tropi-
cal Indian and Pacific Oceans (Indo-Pacific) is a key parameter in
controlling the vertical wind shear over theAtlantic; an important
quantity for hurricane activity. This is illustrated by the close re-
lationships between the accumulated cyclone energy (ACE) index
(a measure of hurricane activity), vertical wind shear over the hur-
ricane main development region, and the difference in SST between
the tropical North Atlantic and the Indo-Pacific region (Figure
7.11). The stronger warming of the tropical NorthAtlantic relative
to that of the Indo-Pacific during the most recent years drove re-
duced vertical wind shear over the Atlantic and is thus responsi-
ble, at least in part, for the strong hurricane activity observed. In
2006, however, the temperature difference between the tropical
NorthAtlantic and the tropical Indian and Pacific Oceans was much
reduced, consistent with the relatively weak hurricane season.

The possible changes that greenhouse global warming might
generate in the characteristics of tropical cyclones (TCs) was
investigated in more detail using scenario climate simulations
carried out with a fully coupled high-resolution global general
circulation model (Gualdi et al., 2008). The results from the
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Figure 7.10: Left panel: scatter plots of the temperature anomaly versus the dominant EAF amplitude for the historical period (blue) and the future
period 2050–2100 (red) under the SRESA1B scenario. Right panel: the same but with removal of the mean change. The coloured stripes on the
axis indicate the 5% quantile, the median and the 95% quantile, again with blue for the historical period, and red for the future.
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climate scenarios reveal a substantial general reduction of TC
frequency when the atmospheric CO2 concentration is doubled
and quadrupled (Figure 7.12). The reduction appears particularly
evident for the tropical western North Pacific (WNP) and North
Atlantic (ATL). In the WNP the weaker TC activity seems to be
associated with reduced convective instabilities. In theATLregion
the weaker TC activity seems to be due to both the increased
stability of the atmosphere and a stronger vertical wind shear.
Despite the generally reduced TC activity, there is evidence of
increased rainfall associated with the simulated cyclones. Finally,
the action of the TCs remains well confined to the tropical region
and the peak of TC number remains equatorwards of 20° latitude
in both hemispheres, notwithstanding the overall warming of the
tropical upper ocean and the expansion polewards of warm SSTs.

The sensitivity of the results to atmospheric model resolution
was also assessed (Bengtsson et al., 2007, 2009). In particular,
TCs under different climatic conditions in the Northern
Hemisphere have been investigated with the Max Planck
Institute (MPI) coupled (ECHAM5/MPI-OM) and atmosphere
(ECHAM5) climate models. The intensity and size of the TC
depend crucially on resolution with higher wind speed, and
smaller scales at the higher resolutions. The typical size of the
TC is reduced by a factor of 2.3 from T63 (≈200 km) to T319
(≈40 km) using the distance of the maximum wind speed from
the centre of the storm as a measure. The full three-dimensional
structure of the storms becomes increasingly more realistic as
the resolution is increased.

For the T63 resolution, three ensemble runs were explored for
the period 1860–2100, using the IPCC SRES scenario A1B and
evaluated for three 30-year periods at the end of the 19th, 20th
and 21st centuries. While there is no significant change
between the 19th and the 20th century, there is a considerable
reduction in the number of TCs by around 20% in the 21st
century, but no change in the number of more intense storms.
The reduction in the number of storms occurs in all regions. A
single additional experiment at T213 resolution was run for the
two latter 30-year periods. The T213 is an atmospheric only
experiment using the transient sea surface temperatures (SST)
of the T63 resolution experiment. Also, in this case, there is a
reduction by about 10% in the number of simulated TCs in the
21st century compared with the 20th century but a marked
increase in the number of intense storms (Figure 7.13). The
number of storms with maximum wind speeds greater than
50 m s−1 increases by one-third. Most of the intensification
takes place in the eastern Pacific and in the Atlantic, where the
number of storms stays more or less the same.

Figure 7.11: ACE index (black), inverted simulated vertical wind shear
(blue), and tropical North Atlantic/Indo-Pacific SST difference (red).
Results are shown from 1940 onwards, since observations are most
reliable for this period. The data were normalised with respect to their
individual long-term standard deviations to ease comparison. The thin
lines are the raw JJASON values. The thick lines denote the low-pass
filtered (applying an 11-year running mean) values.

Figure 7.12: Box plots of the number of TCs per year for the (left) pre-industrial period, (middle) 2xCO2 scenario and (right) model simulation. The
number of TCs (y axis) is plotted for each area of TC genesis (x axis). The horizontal lines within the box are the median. The vertical dashed lines
indicate the range of the non-outliers. The values indicated with crosses are the outliers. Regions are northern Indian Ocean (NI), western North
Pacific (WNP), eastern North Pacific (ENP), North Atlantic (ATL), South Atlantic (SATL), southern Indian Ocean (SI), the ocean north of Australia
(AUS), and the southern Pacific (SP).



7.3.3 Extratropical storms

Little evidence was found for significant changes in the
number of Northern Hemisphere extratropical storms in the
future in either the high- or low-resolution simulations
(Löptien et al., 2008; Bengtsson et al., 2009). Nor were there
any significant changes found in the intensities of storms. One
reason for this may be that, in contrast to tropical storms,
diabatic heating is not a central process in extratropical storms.
There are larger regional changes, in agreement with previous
studies. The largest changes found are in total and extreme
precipitation (Figure 7.14), where significant increases are
seen. Cumulative precipitation along the tracks of the cyclones
increases by some 11% per track, or about twice the increase
in global precipitation, while the extreme precipitation is close
to the globally averaged increase in column water vapour
(around 27%). Regionally, changes in extreme precipitation
are even higher because of changes in the storm tracks.
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Figure 7.13: Distribution of maximum wind speeds at 925 hPa for the
Northern Hemisphere tropical cyclones for the last 30 years of the 20th
(20C) and 21st (21C) centuries as computed by a high-resolution (T213)
version of the ECHAM5 atmospheric model. Bin widths are 5 m s-1.

Figure 7.14: The geographical distribution of changes in average (a, b) and extreme (c, d) precipitation (mm/hr) for the Northern Hemisphere
between 21st century (2069–2100) and 20th century (1959–90) from the ECHAM5 atmosphere model at T213 with 31 vertical levels, using IPCC
scenario A1B with the time-slice method. SST and sea-ice fraction data are from one of the T63 ECHAM5OM coupled model integrations. (a)
DJF time mean, (b) JJA time mean, (c) DJF 99th percentile, and (d) JJA 99th percentile.
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7.4 Sources of predictability in current and
future climate

7.4.1 Predictability on intraseasonal time-scales and
its impact on seasonal predictability

A significant impact of tropical intraseasonal variability on the
phase of the NAO was identified in observations. This presents
a previously overlooked source of predictability for extended-
range weather forecasts in the North Atlantic sector. Evidence
was found that the main tropical climate intraseasonal
oscillation, MJO, controls part of the distribution and sequences
of North Atlantic-European daily weather regimes in winter
(Cassou, 2008). Regimes associated with the NAO are the most
affected, allowing for medium-range predictability of their
phase far exceeding the usually quoted 1-week limit. Using a
very simple statistical model, the correct sign of NAO regimes
could be successfully forecast in ~70% of the cases based solely
on knowledge of the MJO during the previous 12 days (Figure
7.15). This promising skill could be of great importance, as
weather regimes are closely linked with both mean conditions
and extreme temperature and precipitation events over Europe.

The organisation of convection plays an important role in the
intraseasonal predictability of the monsoon.Adetailed assessment
of the Asian summer monsoon intraseasonal variability (ISV),
based on DEMETER seasonal hindcasts, indicates that current
climate models do not simulate this organisation of convection

well (Xavier et al., 2008). The periods of ISV events are shorter
and the event-to-event pattern similarity, or the reproducibility of
the convective events, is poor in the models. These findings point
to a problem in the convective parameterisation of climate
models. Analysis of the air–sea interaction processes associated
with the ISV reveals that the models produce systematic phase
relationships between atmospheric convection, the surface winds,
and the sea surface temperature (SST) and weak SST variability.
In reality, this relation is variable, depending on atmospheric heat
fluxes, the oceanic mixed layer depth, and mixing and
entrainment processes at the bottom of this mixed layer. This
highlights the need to represent two essential factors for improved
SST variability in the models; namely, the diurnal warm layer of
SST and the variations of the oceanic mixed layer depth
(Klingaman et al., 2009).

7.4.2 Predictability on seasonal and interannual
time-scales

Land surface hydrology (LSH) is a potential source of long-range
atmospheric predictability that has received less attention than
sea surface temperature (SST). Results from the ensemble
atmospheric simulations driven by observed or climatological
SST in which the LSH is either interactive or nudged towards a
global monthly reanalysis highlight the influence of soil moisture
boundary conditions in the summer mid-latitudes and the role of
snow boundary conditions in the northern high latitudes

Figure 7.15: Table of contingency between the MJO phases and the North Atlantic weather regimes. For each MJO phase, the anomalous
percentage occurrence of a given regime is plotted as a function of lag in days (with regimes lagging MJO phases). The 0% value means that the
MJO phase is not discriminative for the regime whose occurrence is climatological. A 100% value would mean that this regime occurs twice as
frequently as its climatological mean; −100% means no occurrence of this regime. The presence of a slope as a function of lag is suggestive of
MJO forcing. For white bars, either the change in the distribution between the four regimes is not significant at the 99% significance level, or the
individual anomalous frequency of occurrence is lower than the minimum significant threshold tested at 95% using Gaussian distribution. For the
orange (green) bars, the regimes occur significantly more (less) frequently than their climatological occurrence (after Cassou, 2008).



(Douville, 2009) (Figure 7.16). In addition to the nudged
experiments, ensembles of seasonal hindcasts in which the
relaxation is switched off at the end of spring or winter have been
conducted in order to evaluate the impact of soil moisture or snow
mass initialisation. Land surface hydrology appears as an
effective source of surface air temperature and precipitation
predictability over Eurasia (as well as North America), which is
at least as important as SST in spring and summer. Cloud
feedbacks and large-scale dynamics contribute to amplify the
regional temperature response, which is, however, mainly found
at the lowest model levels and only represents a small fraction of
the observed variability in the upper troposphere.

The role of variable greenhouse gas concentrations in improving
seasonal forecasts/hindcasts has been demonstrated (Doblas-
Reyes et al., 2006; Liniger et al., 2007). An experiment to
determine the relevance for seasonal predictions of the increase
in greenhouse gas concentration recorded in the last 50 years
has been carried out. Results show that there is a substantial
increase in the predictability of global average air temperature
after the first month of the integration. In addition, probabilistic
skill scores for the Northern Hemisphere, Southern Hemisphere
and tropics are systematically better during boreal summer with
regard to a control experiment with constant greenhouse gas
concentration (Figure 7.17).
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Figure 7.16: Zonal mean annual cycle of land surface air temperature: interannual standard deviation (left column, in K), potential predictability
defined as the ratio between explained variance and total variance (central column, in %), and effective predictability defined as the anomaly
correlation coefficient with the observed anomalies derived from the CRU2 climatology (right column, dimensionless). FF, GG and HH experiments
are ensembles of 10-year simulations driven by observed monthly mean SSTs. GG (HH) also includes a nudging towards a soil moisture (snow
mass) reanalysis. Including soil moisture initialisation improves both potential and effective predictability, especially over northern mid-high latitudes
in summer and autumn. The improvement due to snow nudging occurs over high latitudes, especially in winter, spring and autumn.
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7.4.3 Decadal–multi-decadal climate variability and
predictability associated with Atlantic
meridional overturning circulation (MOC)

The mechanisms that govern the variability and predictability of
the Atlantic sector climate on decadal time-scales have been
studied (Latif et al., 2006; Guemas and Salas-Mélia, 2008a,
2008b; Hawkins and Sutton, 2008 and ENSEMBLES
Deliverable 4.2.2 available at: http://www.ensembles-
eu.org/deliverables.html). It has been shown that changes in the
Atlantic meridional overturning circulation (MOC) have
significant and widespread climate impacts, which are
potentially predictable a few years ahead. In particular, a rapid
increase in the Atlantic MOC leads to large-scale warming of
the Northern Hemisphere. A simple initialisation scheme, which
consists of relaxing SST anomalies of the coupled general
circulation models to observations, has been proposed (Figure
7.18; Keenlyside et al., 2008). Using this initialisation scheme,
it has been forecast that global surface temperature may not
increase over the next decade, as natural climate variations in
the North Atlantic and tropical Pacific temporarily offset the
projected anthropogenic warming. The results highlight the
importance of initialising ocean conditions for the decadal
forecast.

Figure 7.17: ECMWF 3-month lead time hindcasts of global 2 m
temperature for August–October without (upper panel) and with
(lower panel) time-varying anthropogenic greenhouse gases (GHG). In
the upper panel the correlation between the ensemble mean and the
observations is only 0.29, whereas this increases to 0.68 with variable
GHGs, indicating that including variable greenhouse gas
concentrations improves the seasonal forecast/hindcast skill of global
mean surface air temperature (after Doblas-Reyes et al., 2006).

Figure: 7.18: (a) Skill of nine 10-year predictions, evenly distributed over the period 1955–2005, made with a climate model initialised using ocean
(SST) observations and run with projected changes in radiative forcing; (b) as in (a) but given by persistence; (c) as in (a) but not initialised using
ocean observations and with radiative forcing following observations; (d) as in (c) but with model SST relaxed to observations between 60 S and
60 N. Correlations exceeding 0.58 are significant at the 5% level. Regions where initialisation results in a significant enhancement or reduction in
skill compared with radiative-forcing-only simulations are indicated by blue cross-hatching in (a) and (c), respectively. Land regions where
restoring to observed SST anomalies provides a significant enhancement in skill relative to radiative-forcing-only simulations are indicated by blue
cross-hatching in (d). Correlations in (a) and (c) are field-significant at close to the 0% level, while those in (b) pass the field significance test at the
1% level (after Keenlyside et al., 2008).
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8.1 Introduction

To assess the quality of the ensemble prediction system for
climate change, a comprehensive and independent evaluation
was performed against analyses/observations. The evaluation
included seasonal to decadal as well as climate change time-
scales and all spatial scales. The focus has been on:
• the representation of key phenomena and processes causing
variability in Global Climate Model (GCM) simulations;

• the actual and potential seasonal to decadal forecast quality;
• the amount of change in the occurrence of extremes in
Regional ClimateModel (RCM) simulations compared with
gridded observational data;

• the quality of impact models when forced with downscaled
reanalysis data and hindcasts.

To facilitate this work, a new, quality-controlled and high-
resolution, gridded observational dataset for Europe was
developed as part of the project.

8.2 Relevance to decision makers

The quality of the probabilistic predictions by the ensemble
prediction system depends critically on the ability of the Global
and Regional Climate Models to simulate key processes and to
reproduce the statistics of present-day weather and climate
variability. For impact studies and adaptation strategies in
European countries, in particular the representation of extremes
in Regional Climate Models, is important. But high-resolution
regional modelling only makes sense if the global models that
provide the boundaries for the regional models have sufficient
quality. The comparison of GCM and RCM simulations against
observations, as performed in this Research Theme, provides
insights into the extent that climate models can be used for
climate prediction. The evaluation also helps in assessing the
uncertainties in the response of models to anthropogenic
forcing.

8.3 The E-OBS daily gridded dataset for Europe

A new daily observational dataset has been developed for
surface climate variables. The dataset covers Europe, for the
greater part with a resolution high enough to capture extreme
weather and climate events. The dataset includes associated
information on uncertainty due to sampling and interpolation.

The ENSEMBLES gridded observational dataset (E-OBS) is a
European land-only daily high-resolution dataset for
precipitation and minimum, mean and maximum surface
temperature for the period from 1950 to the present. This dataset
improves on other products in its spatial resolution and extent,
time period, number of contributing stations, and research into
finding the most appropriate method for spatial interpolation of
daily climate observations (Hofstra et al., 2008). A full
description can be found in Haylock et al. (2008). The
underlying station data are from the quality-controlled daily
observations of the European Climate Assessment and Dataset
project (ECA&D – http://eca.knmi.nl; see Klok and Klein Tank,
2008).

The E-OBS dataset is publicly available from http://eca.knmi.nl/
ensembles, strictly for use in non-commercial research and non-
commercial education projects only. The gridded dataset is
made available on two regular latitude–longitude grids
(resolutions 0.25 and 0.50 degrees) and on two rotated pole
grids (resolutions 0.22 and 0.44 degrees) with the North Pole at
39.25 N, 162 W. It covers the area between 25 N to 75 N and
40 W to 75 E. The regular grid is the same as that for the
monthly datasets available from the Climatic Research Unit
(CRU) and the rotated grid is the same as that used in many
ENSEMBLES Regional Climate Models (RCMs). The
interpolation method has been designed to provide the best
estimate of grid-box averages rather than point values. This
enables direct comparison with RCM simulations. In addition to
the ‘best estimate’values, daily standard errors (as a measure of
interpolation uncertainty) and surface elevation are also
provided. The dataset will continue to be maintained and
updated beyond the project’s duration. As an illustration of the
dataset, Figure 8.1 shows the 0.25 degree regular temperature
grid for the day with the record high maximum temperature
averaged over Europe (30.3°C compared with the 1961–1990
summer mean of 22.4°C). This day was 29 July 2002.

Homogeneity tests by Begert et al. (2008) reveal that many of
the underlying station series are subject to potential
inhomogeneities (Figure 8.2), for instance as a result of changes
in observation practices. This affects, in particular, the
understanding of extremes, because changes in extremes are
often more sensitive to inhomogeneous climate monitoring
practices than changes in the mean. In addition, there are
limitations in the ability of the interpolation method to estimate
grid values from the underlying station network. Hofstra et al.
(2009a, 2009b) found that, in areas where relatively few stations
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have been used for the interpolation, both precipitation and
temperature are ‘oversmoothed’. This leads to reduced
interpolated values relative to the ‘true’ area averages, in
particular for extremes. As a result, care has to be taken when
using the E-OBS dataset, even though E-OBS is the only daily
gridded dataset currently available.

8.4 Representation of key variability
phenomena and processes

Systematic errors in the simulation of climate variability have
been evaluated by considering whether GCMs are capable of
reproducing correctly the intensity, frequency and distribution
of the major teleconnection patterns in the tropics and
extratropics (such as PNA, ENSO, NAO, Monsoon-
Mediterranean, etc.).

The aim was to identify and understand model biases and to
provide diagnostics and metrics that help to evaluate aspects
of climate models that are critical to assess the response of
different models to anthropogenic forcing. This was done
firstly by developing diagnostics that were applied to the
stream 1 simulations and secondly by sensitivity experiments.
The latter serve either to develop new diagnostics or to test
the role of particular aspects of model formulation, such as
clouds, surface fluxes, or vertical and horizontal resolution.
The evaluation focused on the global climate and tropical
regions, but tropical–extratropical teleconnections were also
considered. Some examples of key phenomena and processes
are provided below.

8.4.1 Climate sensitivity and clouds

The analyses of climate sensitivity show that there is a strong
relationship between the response of clouds in subsiding regions
in the tropics and the magnitude of the temperature change
(Dufresne and Bony, 2008; Webb et al., 2006). A first diagnosis
(Bony et al., 2006) proposes sorting the atmospheric circulation
into convective regimes in the tropical regions. Heat fluxes and
cloud radiative forcing can then be compared with satellite data,
in a way that clearly identifies the major differences between
models that are linked to the convection scheme. In addition, the
sensitivity of these fluxes to the SST at the interannual time-scale
and the comparisonwith data has been proposed in order to assess
the changes in cloud forcing between different simulations, and
to explore the reasons for the range of climate sensitivity found
between different models (see also IPCC, 2007).

8.4.2 The east Pacific and the El Niño–Southern
Oscillation

The regime-sorted analyses were further extended at a more
regional scale to understand the double-ITCZ (Intertropical
Convergence Zone) structure produced in most coupled models
in the east Pacific (Figure 8.3; Bellucci et al., 2009). The proposed
diagnostics show that the double-ITCZ structure results from a
too frequent onset of deep convection south of the equator
triggered by the convection SST threshold in themodels.Amajor
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Figure 8.1: Example of E-OBS showing the maximum temperature (left) plus standard error (right) on the hottest day in Europe since 1950: 29
July 2002. The box defines the extent of the dataset. White land areas indicate not enough station data for interpolation.

Figure 8.2: Potential number of breakpoints detected using the
VERHOM methodology for statistical homogeneity testing of station
series (Begert et al., 2008).

Maximum temperature series
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outcome of this work is the identification of two distinct sources
for the double-ITCZ error; namely (1) an error in the frequency
of the occurrence of deep convection (associatedwith the ocean–
atmosphere coupled interactions), and (2) an error in the
magnitude of precipitation for an individual convective event
(which can be ascribed to the atmospheric GCM only).

The east Pacific is the core region for the development of the El
Niño–Southern Oscillation (ENSO), and the double-ITCZ
structure has some implications for the development of the
seasonal cycle of SST along the equator and on the
characteristics of the interannual variability. The relationship
between land and ocean convection has been identified as an
important player in the east Pacific, from sensitivity
experiments with the IPSL-CM4 coupled model differing only
in the convection scheme (Braconnot et al., 2007). Increased
resolution is needed to better represent coastal upwelling and
the frequency of the Pacific ENSO (Navarra et al., 2008).
However a change in model physics (such as convection) has
greater implications for model results than a change in
resolution.Ametric is proposed to characterise the behaviour of
ENSO in climate models considering the dynamical and the
heat fluxes coupling between the ocean and the atmosphere.
Comparing the behaviour of two different convection schemes
in the IPSLmodel, the method clearly shows that the dynamical
feedback is underestimated in both versions of the model,
whereas the thermodynamic feedback explains why the ENSO
has a correct magnitude in one version but is damped in the
other version (Guilyardi et al., 2009). This evaluation approach
has been extended to all ENSEMBLES stream 1 simulations.

8.4.3 Indian and west Pacific Oceans

Several evaluation studies have considered the Indian Ocean,
the west Pacific and the Indian and East Asian monsoon. A
diagnostic tool is proposed in order to extract the climatic
interannual signals from the non-stationary fields in the

simulations and observations. It has been applied to the analyses
of the stream 1 simulations. The statistical method allows
estimation of the 20th century trends, as well as the relationship
between the Indian summer monsoon and the development of
ENSO. Relatively cold (warm) SSTs in the central-eastern
Pacific are associated with a strong (weak) monsoon during
boreal summer in the observations. Results of the analyses show
that almost all simulations fail to reproduce this relationship.
Sensitivity experiments have been performed to understand the
wind-evaporation and the wind-thermocline feedbacks in the
east Indian Ocean and to explain why they became a highly
significant precursor of ENSO during recent decades. This was
done through a sensitivity experiment where SSTwas altered by
±1°C in the south-east Indian Ocean. The results confirm the
important role of this region and the need to reproduce it
accurately in climate simulations (Terray and Dominiak, 2005).
Specific attention has also been devoted to the modelling of the
Asian summer monsoon and the effects of horizontal model
resolution, air–sea coupling and improved physics on the
simulation of this phenomenon (Alessandri et al., 2007; Cherchi
and Navarra, 2007).

Intraseasonal variability (ISV) is also strongly connected with
the development of active and break phases of the Indian
monsoon. SSTwarmingmay affect the characteristics of ISV in
the future.Anewmetric is proposed to assess the representation
of the ISV in the climate models. This work was done in close
collaboration with the seasonal prediction evaluations to address
both the DEMETER and the IPCC class models. The diagnosis
uses the local mode analyses proposed by Goulet and Duvel
(2000), which was extended by Xavier et al. (2009). The
method allows us to detect and to characterise in a simple
mathematical form the main events of an intermittent
phenomenon. It provides a pattern and statistics for each
intraseasonal event that can be combined to assess the simulated
ISV with observations. The results show that, for the summer
ISV over the Indian Ocean, the DEMETER versions of the
climate models producemore reproducible but less realistic ISV
patterns compared with the IPCC versions of the models (Figure
8.4). The metric bears a significant relationship with the high
frequency variability and the accuracy of the simulated summer
monsoon climate. This implies that a correct representation of
internal atmospheric processes such as the synoptic weather
variability and ISV is required in order to reduce uncertainties
in monsoon climate projections (Xavier et al., 2009).

The importance of synoptic weather variability and ISV was
further highlighted by analysing the relationship between surface
temperature warming over the northern Indian Ocean (the local
climate sensitivity) and changes in the strength of the heaviest
monsoon rainfall events during boreal summer in climate
projections (Turner and Slingo, 2009a,b). This revealed two
major subsets among themodels: one in which the strengthening
of the heaviest monsoon rainfall events is entirely consistent with
thermodynamic arguments (the degree of surface warming and
available moisture through the Clausius–Clapeyron relation);
and another in which the increases include some additional
dynamic component. This suggests that the type of convective
parameterisation may influence the response of monsoon
extremes in the CMIP3 models. Those models with bulk mass-
flux-type convection are strongly tied to changes in surface
properties and thus have (predominantly) predictable increases

Figure 8.3: Regime-sorted precipitation (mm/day) weighted by the PDF
of ω500 for AMIP (left) and the corresponding coupled AR4 models
(right) for the region 100 W–150 W, 20 S–0 (Bellucci et al., 2009). Part of
the model difference is already found in the atmosphere-only simulation
(AMIP), whereas the coupling with the ocean (coupled) and the
changes in SST further trigger too deep convection and precipitation,
which favour the development of the double-ITCZ structure.



in extremes. Other models, with Arakawa–Schubert type
convection, tend to show increases in monsoon extremes far
beyond thermodynamic predictions.

8.4.4 The role of the stratosphere

The effect of systematic biases in the stratosphere on the
troposphere climate has been investigated using the ECHAM5
atmospheric model (Giorgetta et al., 2006). The results show
how the model representation of the stratosphere has positive
effects on the mean state of temperature and wind in the
troposphere (Roeckner et al., 2006). It is also shown that these
effects are more pronounced when the atmosphere is coupled to
the ocean. In addition, changes in the horizontal diffusion
scheme are needed, as a direct consequence of the vertical
discretisation, to represent properly the dynamics of the
stratosphere and the wave-mean flow interaction. These
changes affect the Brewer–Dobson circulation as well as the
Hadley circulation, and have a positive impact on climate
teleconnections between ENSO and the North Atlantic
European regions (Cagnazzo andManzini, 2009). These studies
therefore recommend the use of climate models that resolve the
stratosphere for climate studies.

8.5 Seasonal to decadal forecast quality

A thorough forecast quality assessment of the seasonal and
annual GCM simulations was carried out. Several tools have
been made available which help scientists (including those
from outside ENSEMBLES) to access and analyse the data.
Significant progress has been made with assessing the
predictability for the North Atlantic sector and in answering
the question why, and under what conditions, a multi-model
can outperform the best participating single model.

8.5.1 Forecast quality assessment

A preliminary set of forecast quality results for the seasonal
hindcasts over the period 1970–2005 has been published on
the website: http://www.ecmwf.int/research/EU_projects/
ENSEMBLES. Different aspects of the forecast quality are
available for all the single-model systems, as well as for the
multi-model. This comparison takes into account the larger
ensemble size of the multi-model and thus introduces a
reduced multi-model for the comparison with the perturbed-
parameter ensemble. A comprehensive assessment of the
perturbed-parameter decadal hindcasts suggests that there is
a small increase in forecast quality of temperature and
precipitation when the predictions are initialised. The increase
in forecast quality is found in the first couple of years.

8.5.2 ECMWF seasonal to decadal (s2d) public data
server

The capabilities of the ECMWF seasonal–decadal OPeNDAP
server have been further enhanced to allow others to perform
analyses on the stream 1 seasonal-to-decadal hindcasts. Also,
a set of general-purpose forecast-quality assessment tools has
been developed for working with the data. In addition, the
public data server at ECMWF has been linked to the KNMI
Climate Explorer.

8.5.3 KNMI Climate Explorer (http://climexp.knmi.nl)

The KNMI Climate Explorer is a tool which allows anyone
to correlate station data, climate indices, observations,
reanalysis fields, past seasonal forecasts and climate change
experiments. A large number of datasets (both climate model
data and observations) have been brought together on a
server at KNMI. For the ENSEMBLES project, additional
functionality has been added to the Climate Explorer. A set
of seasonal forecast verification measures has been added in
collaboration with the University of Reading, and links to
the seasonal–decadal archive at ECMWF and the RCM
archive at DMI have been constructed. As a result, most
datasets generated in ENSEMBLES are now also available
for analysis in the Climate Explorer. Figure 8.5 illustrates
the seamless integration that has been made between the
KNMI Climate Explorer and the s2d public data server at
ECMWF in a seasonal forecast verification setting.

98

8 Evaluation of the ENSEMBLES Prediction System

Figure 8.4: Distribution of distances between individual intraseasonal
variability (ISV) events to the observed average summer ISV pattern in
the observations and models. The bars range from the 25th percentile
to the 75th percentile value. The line represents the range of values.
The median (50th percentile) values are denoted by the black dots.
Models are arranged according to the median distance.
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8.5.4 North Atlantic sector

Perfect predictability analysis of high-resolution simulations on
seasonal to decadal time-scales has been performed for the
North Atlantic sector. This focused on assessing the
predictability of mid-latitude storms, tropical storms, and
weather extremes on these time-scales. Predictability is much
higher for the tropical regions, reaching a minimum over central
western North America, Greenland and northern Europe.

8.5.5 Mechanics of multi-model combination

Multi-model ensemble combination has become a standard
technique to improve ensemble forecasts on all time-scales,
including those that are relevant for the ENSEMBLES project.
While the success of multi-model combination has been
demonstrated in many studies, the underlyingmechanisms have
so far not been properly understood. The question of why, and
under what conditions, a multi-model can outperform the best
participating single model has been addressed (Weigel et al.,
2008, 2009). The answer is that multi-model ensembles can
indeed locally outperform a best-model approach, but only if the
single-model ensembles are overconfident (Figure 8.6). The
reason is that multi-model combination reduces overconfidence,
i.e., ensemble spread is widened while average ensemble-mean
error is reduced. This implies a net gain in prediction skill,
because probabilistic skill scores penalise overconfidence. Under
these conditions, even the addition of an objectively poor model
can improve multi-model skill. It seems that simple ensemble
inflation methods cannot yield the same skill improvement.

8.6 Extremes in Regional Climate Model simulations

The evaluation of the representation of extremes in RCMs has
focused on the European region, with special case studies for the
Rhine Basin, the Alps, and the eastern Mediterranean. Both
RCM simulations nested within the ERA-40 reanalysis and
nested within transient ESM simulations were considered.

8.6.1 Extreme indices in ERA40-driven runs and
observations

Maximum (TX) and minimum (TN) temperatures from the
CNRMALADIN RCM simulation were assessed in detail for
the Balkan Peninsula using observations from 53 stations
(Kostopoulou et al., 2009a). The model performance was first
evaluated by calculating the correlation coefficients between
the seasonal mean values from the model and the observations.
The result for TN is shown in Figure 8.7. Themap for the winter
season reveals low correlations (<0.4) in the north-western part
of the domain in the vicinity of the DinaricAlps.An area of low

Figure 8.5: Comparison of the point-correlation of summer seasonal predictions of near-surface air temperature started on 1 May of each year
against observations for DEMETER (left) and ENSEMBLES stream 2 (right). There is a gain in skill over the Mediterranean area, and over part of
Britain; probably as a consequence of the better representation of global warming in the ENSEMBLES experiments. Anybody with internet
access can reproduce these plots using the KNMI Climate Explorer linked to the s2d public data server at ECMWF.

Figure 8.6: Expected skill of multi-model ensemble forecasts as a
function of the number of participating single model ensembles. The
red line indicates well-calibrated reliable ensembles and the black line
represents highly overconfident ensembles. The ensembles have
been generated from synthetic toy model simulations. It can be seen
that only in the latter case does model combination truly enhance
prediction skill, because multi-model combination of overconfident
single model ensembles widens the spread. The underlying
‘mechanics’ of multi-model combination is illustrated by the four small
panels at the bottom of the plot: the combination of more and more
overconfident single model ensembles (shown as grey shading)
successively widens the ensemble spread and reduces the ensemble
overconfidence until eventually the entire predictable signal is
correctly sampled and forecasts are reliable.
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correlations is also evident in northern Greece. These low
correlations may be attributed to the surface snow scheme of
the RCM. In the three other seasons, relatively high correlations
are found around the Aegean Sea. Correlations are weak and
statistically not significant in summer in the northern part of the
domain. A further analysis showed that cold spells (sequences
of 5 days or longer below the 10th percentile of TN) were better
reproduced than warm spells (sequences of 5 days or longer
above the 90th percentile of TX). However, poor results for cold
spells were obtained for stations located in the north-western
part of the study region, which is consistent with the low
correlations in Figure 8.7.

Extreme precipitation events in the Alpine region have been
analysed within the ERA40-driven RCM experiments (Pall et
al., 2009). Model simulations from fifteen RCMs have been
compared to the E-OBS dataset for the baseline 1961–1990
period, using precipitation indices as well as the generalised
extreme value (GEV) distribution for estimating return levels
of extreme events. Focusing on the 90th percentile of wet days
as a simple index of extremes reveals that the models are
generally too wet around the southern Alpine rim, and too dry
around the Po Valley, though large differences in model
performance occur. This is illustrated in Figure 8.8 for autumn,
which is climatologically the wettestAlpine season due to moist
and weakly stratified southerly airflows (Frei et al., 2006).

8.6.2 Evaluation of trends in extremes in ERA40-
driven RCM simulations

Trends in the extremes indices and quantiles of temperatures
and precipitation in the ERA40-driven RCM simulations have
been compared with those in the E-OBS data for the period
1961–2000 (Lister and Jones, 2009). An example of extreme
minimum temperatures is given in Figure 8.9. A salient feature
is the strong negative trend in the eastern part of the domain in
the autumn season, which is well reproduced by the CHMI-
ALADINRCM simulation. Kostopoulou et al. (2009a) obtained
a similar result for the trend in observed extreme minimum
temperatures in the autumn season at stations across the Balkan
Peninsula and those simulated by the CNRM-ALADIN RCM.
By contrast, the RCM simulation in Figure 8.9 is unable to
reproduce the trends in the winter extremes in the E-OBS data.

8.6.3 Evaluation of extremes in transient RCM
simulations

Hanel and Buishand (2009a) analysed the 1-day summer and 5-
daywinter precipitation extremes over the Rhine Basin in fifteen
RCMsimulations (Figure 8.10). For this purpose, the index-flood
method has been extended for application to transient climate
model simulations (Hanel et al., 2009). The Rhine Basin was
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Figure 8.7: Correlations between seasonal mean values of TN from the ERA40-driven CNRM ALADIN RCM simulation and station observations.
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divided into five regions. For each region a non-stationary GEV
model was fitted. This model assumes that the GEV location
parameter varies over the region, while the dispersion coefficient
(the ratio between theGEV location and scale parameters) and the
shape parameter are constant within the region. All these
parameters are allowed to vary with time. Seasonal global
temperature anomalies were used as a time-dependent covariate.
The estimated GEV parameters for the period 1961–1990 were,
for most RCM simulations in the summer season, larger than
those from the E-OBS data. These biases could in large part be
ascribed to the small number of stations used for gridding the
observations. For the winter season, the majority of the RCM
simulations considerably overestimated the GEV location
parameter and underestimated the dispersion coefficient.

In addition to the model biases, the consistency of projected
changes in extremes has also been evaluated. Figure 8.11 shows
the projected changes between the periods 1961–1990 and 2070–

2099 for the twelve RCM simulations up to the end of the 21st
century. Though there is considerable variation in the changes of
the extreme value distributions among the RCM simulations,
common tendencies can be identified. In the summer season, the
dispersion coefficient increases, while there is hardly any change
in the location parameter and the shape parameter. As a
consequence, there is almost no change in the 2-year quantile,
but as the return period gets longer there is a considerable increase
due to the increase in the dispersion coefficient. The increase in
large quantiles (on average about 15% for the 50-year quantile)
is different from the change inmean summer precipitation, which
decreases in the majority of the RCM simulations. In the winter
season, there is an increase in the location parameter, almost no
change in the dispersion coefficient, and a slight decrease in the
shape parameter. The increase in the location parameter implies
an increase of the quantiles at short return periods. However, the
effect of the increase in the location parameter is counterbalanced
by the decrease in the shape parameter.As a result there is almost

Figure 8.8: Relative bias of the 90th percentile of wet days (>1 mm/day) for all autumn seasons (SON) in the period 1961–1990 (Pall et al., 2009). Shown
are the biases in fifteen different ERA40-driven RCMs relative to the E-OBS dataset, on the 0.22 degree (~25 km) rotated grid for the Alpine domain.
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Figure 8.9: Evaluation of trends in extreme minimum temperatures in the period 1961–2000 in the CHMI-ALADIN RCM (Lister and Jones, 2009).
The trends (°C per decade) in the 5th percentile of the minimum temperatures (TN05) in the ERA40-driven RCM simulation (left panels) are
compared with those in the E-OBS data (right panels) for the winter (upper row) and autumn (lower row) seasons.

Figure 8.10: The Rhine Basin and the RCM simulations with driving ESM used in the study of precipitation extremes in Figure 8.11.

Trend = –5 : –1
Trend = –0.99 : –0.5
Trend = –0.49 : –0.1
Trend = –0.09 : 0.09
Trend = 0.1 : 0.49
Trend = 0.5 : 0.99
Trend = 1 : 5
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no change of large quantiles despite the clear increase in mean
winter precipitation inmost RCMsimulations. The uncertainty of
the relative changes in the quantiles, as indicated by the envelope
in Figure 8.11, is quite large. This is partly due to the influence of
natural variability on the estimated changes.

For the Netherlands, the distributions of the 1-hour and 1-day
annual maximum precipitation amounts in eight transient RCM
simulations were compared with those from a high-quality radar
dataset (Hanel and Buishand, 2009b). The performance of the
RCM simulations turned out to be much worse for the hourly
precipitation extremes than for the daily extremes. For instance,
for the hourly maxima the majority of the RCM simulations
underestimate the location parameter by 30–40% with respect
to the radar data, whereas the relative bias is no more than 10%
for the daily maxima.

Kostopoulou et al. (2009a, 2009b) studied the ability of the
ENSEMBLES transient RCM simulations to reproduce extreme
climate indices in the eastern Mediterranean region. The
evaluation has been initially implemented between the station
and the nearest-gridded observed (E-OBS) data at selected sites
from the eastern Mediterranean, and then extended to several
RCM simulations. The E-OBS dataset satisfactorily reproduced
temperature climate indices for most study sites. As expected,
the reproduction of precipitation indices was less accurate, in
particular for locations with complex topography. Therefore, in
some cases it became necessary to use an average of several
neighbouring grid points in order to obtain a better
representation of the single-site climatic regime. Extreme
climate indices were subsequently calculated from
ENSEMBLES regional model data and their reliability was
assessed against those obtained from the E-OBS dataset. The
results varied greatly between sites. In some cases all models
performed adequately, while for other sites some models did
better than others.

8.6.4 Drought indices

In order to evaluate drought, an optimised objective
classification of ‘critical dry’ circulation patterns (CPs),
responsible for major droughts and low river flow periods in
south-west Germany has been developed based on fuzzy
rules (Bárdossy, 2009). An objective function based upon
temporal differences of daily low flows was defined for
optimisation purposes. The optimisation was done for
different numbers of CPs. Finally, circulation patterns were
classified into seventeen classes. Objective CP-MSLP-
anomalies have been calculated for the period 1990–1999.
These anomalies have been compared with the MSLP
anomalies of the so-called ‘Grosswetterlagen’, which have
been discussed in connection with major historical droughts.
The objective drought CP anomalies are quite similar to
those from the ‘Grosswetterlagen’. As an illustration of their
usage, maps of a CP-based wetness index have been
calculated for 172 grid cells (25 km x 25 km) in the German
part of the Rhine Basin for all seventeen CPs. The new CP
classification system for droughts has been analysed by
observing the occurrence frequencies of the identified
critical dry CPs in the study area for historical droughts
1959, 1976, 1991, 2003. In addition, the new drought CPs
have been evaluated for RCM simulations (both ERA40- and
ESM-driven) for the control period 1960–1991 and the
period 2001–2100. For the latter, the A1B scenario runs of
RACMO2, REMO and HadRM3 (the standard version as
well as the versions with high and low climate sensitivity)
were considered. Results for RACMO2 and REMO are very
similar, probably due to the same driving ESM (ECHAM5).
Frequencies of the combined drought CPs show significant
increasing trends for summer for the transient A1B runs of
RACMO2 and REMO and do not show any significant
change for the three HadRM3 transient runs.

Figure 8.11: Projected changes in precipitation extremes for the Rhine Basin between the periods 1961–1990 and 2070–2099 (Hanel and
Buishand, 2009a). Shown are the basin-average relative changes of various quantiles as derived from the changes of the GEV parameters. Left:
relative changes in the quantiles of 1-day precipitation maxima in the summer season (JJA). Right: relative changes in the quantiles of 5-day
maxima in the winter season (DJF). The thin coloured lines in the figures represent the area-average change for the individual RCMs, the thick
black line is the overall mean change. The envelopes indicate the 5th percentile of the minimum and the 95th percentile of the maximum relative
basin-average change in 500 bootstrap samples.



8.7 Quality of impact models

The quality of impact models when forced with downscaled
reanalysis data and hindcasts was evaluated through the use of
application-specific verification datasets. The evaluation has
focused on the seasonal time-scale, considering both Europe
andAfrica. This work is closely related to RT6. An illustration
of the evaluation results is presented below for seasonal
forecasts of Malaria. Other results are described in Section 9
together with the impact models.

8.7.1 Malaria forecasts

Seasonal forecast performance was evaluated for malaria
prediction in Botswana. The results were obtained by driving
the Liverpool malaria model (LMM) with rainfall and
temperature forecasts from ENSEMBLES and comparing
forecast total malaria incidence for November forecast months
4–6 (February, March andApril) with a publishedmalaria index
for Botswana for the period 1980–2001 (Figure 8.12; Thomson
et al., 2005).A comparison with earlier DEMETER results and
with the malaria model driven by ‘observations’ (ERA-40
reanalysis) has also been made. Overall, the multi-model results
for ENSEMBLES show a small improvement from
DEMETER, despite a reduction in the number of models from
seven to five. Low-malaria events are forecast with the highest
skill, although high-malaria events are also forecast skilfully.
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Figure 8.12: ENSEMBLES seasonal forecast performance for malaria
prediction in Botswana, for (a) high-malaria events (above the upper
tercile) and (b) low-malaria events (below the lower tercile). Single-
model results are given on the left of the dashed line, multi-model
results on the right. ROC skill score (ROCSS) measures performance
relative to climatology: a score of 0 indicates no improvement over a
simple climatological forecast. Results were obtained by driving the
Liverpool malaria model (LMM) with rainfall and temperature forecasts
from ENSEMBLES and comparing forecast total malaria incidence for
November forecast months 4–6 (February, March and April) with a
published malaria index for Botswana for the period 1980–2001
(Thomson et al., 2005). ENSEMBLES results are shown as solid black
circles, with whiskers representing 95% confidence intervals in the
ROCSS estimate by 999 bootstrap samples. For comparison, results
are also shown for the corresponding model from DEMETER. The
hollow squares on the right-hand side show the corresponding scores
for the malaria model driven by ‘observations’ (ERA-40 reanalysis).
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Introduction

Climate change impacts in Research Theme 6 were assessed in
three areas:
• The integration of process models of impacts on the
natural and managed global environment into Earth
System Models (Section 9.1);

• Modelling the impacts of extreme weather events and
applying probabilistic climate projections to evaluate
impact risks (Section 9.2);

• Maximizing skill in the impacts models driven by
seasonal-to-decadal scale forecasting (Section 9.3).

Many of the results presented in Sections 9.2 and 9.3 are
preliminary – studies are still ongoing, and so far few have been
published in peer reviewed literature.

9.1 The integration of process models of
impacts on the natural and managed
global environment into Earth system
models

9.1.1 Introduction

Global-scale models for the impacts of environmental changes
on ecosystems – also known as dynamic global vegetation
models (DGVMs) – play two roles in climate research. DGVMs
can perform offline simulations, driven by climate observations
and climate model outputs, to assess impacts on ecosystems and
ecosystem services. The latter include freshwater supply, which
is strongly influenced by ecosystem processes such as tree–
grass competition, and physiological effects of CO2 that are not
represented in conventional hydrological models. DGVMs can
also be coupled online into climate models, allowing a
consistent simulation of the global carbon and water cycles
including feedbacks to climate. ENSEMBLES has used
DGVMs in both roles.

In terms of model developments, the Lund–Potsdam–Jena (LPJ)
offlinemodelling framework (Sitch et al., 2003) has been radically
enhanced. The version called LPJmL simulates the human-
modified landscape including arable crops, managed forests,
grazing and fire. The DGVM components of the Hadley Centre
and IPSLclimatemodels,which can be run either offline or online,
have also been upgraded to include human-influenced aspects of
ecosystems.Themodels have been exercised usingENSEMBLES
climate model outputs, and the online models have been used as
fully embedded components in the RT2a stream 2 model runs.

The research results reported here were influenced by two recent
scientific developments. First, the C4MIPproject (Friedlingstein
et al., 2006) showed that the climate–carbon cycle feedback is
subject to large differences betweenmodels (see also Section 8).
This result was highlighted in the IPCCWorkingGroup I Fourth
Assessment (Denman et al., 2007). The resulting uncertainties
have been shown to be at least as large as those for climate
change itself (Booth et al., 2009). This implies an urgent need to
subject the carbon cycle components ofmodels to critical testing,
with a view to reducing the uncertainties. Second, IPCCWorking
Group II has brought the limitations of traditional regional
impacts analysis into sharp focus. The publication of the AR4
coincided with a major upswing in government-level interest in
quantifying climate impacts. The lack of quantitative, global
information on impacts has been perceived as a significant
obstacle to progress in climate policy. In response to these
challenges, two new research strands were developed: a focus
on benchmarking and evaluation ofmodels with the emphasis on
carbon, water and energy exchanges at the land surface; and a
means to depict quantitative information about climate impacts
as a probabilistic global risk analysis. The impacts of climate
and CO2 changes on water resources have been a cross-cutting
theme, and a major component both of the risk analysis and of
the quantitative assessment of climate impacts.

9.1.2 Model developments

ENSEMBLES has supported many new model developments.
All have shared a common goal, to move from modelling the
world as if all vegetation were natural, to approximating the real-
world vegetation, including land use. These developments are
world-leading for DGVMs. The most advanced model in this
respect is LPJmLwhich now includes process-based treatments
of arable cultivation (eleven crop types, including irrigation),
forestry management (see Deliverable 6.1 at:
http://www.ensembles-eu.org/deliverables.html), rangelands,
and freshwater use andmanagement (Bondeau et al., 2007; Rost
et al., 2008a) (Figure 9.1).

Crops have also been included in the Hadley Centre and IPSL
climate models. In the Hadley Centre model, ENSEMBLES has
supported the implementation of an innovative generic crop
model in the land surface modelling framework, allowing
investigation of climate feedbacks from land-use changes
(including irrigation) as well as impacts of simulated climate
changes on crop productivity. This work has been paralleled by
implementation of crop models in the IPSLmodel.
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A process-based representation of fire–vegetation interactions
(Thonicke et al., 2009) is included in theLPJmodel versions called
LPX and LPJ-GUESS. Fire effects can be modelled in a natural
way inLPJ-GUESS as it includesmore detailed representations of
woody population dynamics, distinguishing different age and size
classes ofwoody plants. The fire-enabled version of LPJ-GUESS
performswell at theEuropean scale, capturing the potential natural
vegetation of the Mediterranean region, in particular, better than
previousmodel versions.Acomparable process-based fire regime
model has been developed for the Hadley Centre HadCM3LC
climate model (see Deliverable 6.6 at: http://www.ensembles-
eu.org/deliverables.html). The fire model in HadCM3LC was
optimised to improve the simulation of burnt area in comparison
with satellite data in the GFED database (http://www.geo.
vu.nl/~gwerf/GFED.htm). The fire model was coupled to the
atmospheric component of the carbon cycle module within the
climatemodel. Initial results show spatial and temporal patterns of
fire behaviourwhich are plausible at a global scale (Figure 9.2), but
with some regional biases. These are largely due to biases in the
climate model, but biases in the modelled vegetation may also be
involved.

A dynamic representation of plant–grazer interactions in LPJ-
GUESS was developed, and is undergoing testing. Theoretical
analysis has clarified key features of grazing dynamics for
modelling, including a proof that ‘grazing optimisation’
(higher plant productivity being achieved with mammalian
herbivores rather than without) is possible in model
ecosystems.
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Figure 9.1: Schematic representation of processes in LPJmL (Bondeau et al., 2007).

Figure 9.2: Annual mean burnt area fraction of grid cells: observed
(GFED database) and modelled (online optimised HadCM3LC model).
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9.1.3 Model benchmarking and evaluation

Offline evaluation

A new protocol has been implemented for offline model
evaluation.Apre-industrial spin-up of the model is followed by
a historical simulation (1901–2006) driven by gridded observed
climate data and atmospheric CO2 concentration. Three
members of the LPJ model family (LPJmL, LPJ-GUESS and
LPX), the Hadley Centre land-surface model (JULES), and the
IPSL land-surface model (ORCHIDEE) have participated.
Standard benchmarks have been defined for the carbon and
water cycles and for the fraction of absorbed photosynthetically
active radiation, a remotely sensed quantity which links the two
cycles.

An initial offline evaluation by Sitch et al. (2008) used earlier
variants of the same three models: LPJ (Gerten et al., 2004),
ORCHIDEE (Krinner et al., 2005), and TRIFFID (a forerunner
of JULES: Cox, 2001). Figures 9.3 and 9.4 show examples of
unpublished data–model comparison results for the new water
cycle benchmarks. Figure 9.3 compares seasonal cycles of latent
heat flux at selected FLUXNETmeasurement sites (Blyth et al.,
2009), indicating generally good agreement but suggesting too
large a decrease in simulated evapotranspiration during the
summer months in some sites and models.

Figure 9.4 compares seasonal cycles of river discharge from
major river basins (data from Fekete et al., 2002). For this
comparison, values of monthly runoff simulated on a grid-cell
basis have been used as input to the TRIP hydrological routing
scheme, so that the analysis takes account of lags in water
transport. This comparison is important for evaluation of the
models’ ability to simulate large-scale changes in freshwater
supply. Interpretation has to take account of extractions, not
included in the models, which account for the general
oversimulation of the flows for (most notably) the Congo,
Parana, Nile and Niger catchments. The seasonal patterns are
well simulated for the most part.

Figure 9.5 illustrates the model benchmark for seasonal cycles
of CO2 concentration, using LPX as an example. Monthly net
ecosystem exchanges are propagated to the stations by transport
matrices obtained from the TM2 atmospheric transport model
with prescribed wind fields. The CO2 measurement stations
illustrated span a range of latitudes. Greater seasonal cycle
amplitudes are seen in the northern high latitudes than in lower
(or southern) latitudes (Heimann et al., 1998) because of the
large temperature seasonality across the large boreal land
masses (Heimann et al., 1998). The comparison shows the
model’s ability to capture the amplitude and timing of these
signals.

Online evaluation

Two sets of coupled climate-carbon cycle model simulations
from the Hadley Centre were evaluated, and two from IPSL,
against the seasonal cycle of CO2 during 1980–2005 (Cadule et
al., 2009). In ‘HC1’, the Hadley Centre coupled climate–carbon
cycle model was forced by emissions of CO2 only, as in the
C4MIP intercomparison (Friedlingstein et al., 2006). ‘HC2’,
from Jones et al. (2003), includes interactive sulphate aerosols.

Figure 9.3: Comparison of the seasonal cycle of modelled and
observed latent heat flux, for selected FLUXNET measurement sites.
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Figure 9.4: Comparison of the seasonal cycle of modelled and observed river discharge, for nine of the world’s largest river basins.

Figure 9.5: Comparison of modelled (LPX, red curve) and observed (crosses) seasonal cycles of atmospheric CO2 concentration at different
latitudes. The blue curves indicate the prescribed ocean component; the brown curves indicate the prescribed fossil fuel component.
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The IPSL model followed the C4MIP protocol. The versions
used were IPSL-CM2-C and IPSL_CM4_LOOP (‘LOOP’)
(Friedlingstein et al., 2006). LOOP contains the ORCHIDEE
(Krinner et al., 2005) land model, while IPSL-CM2-C uses a
simpler land carbon cycle model.

Figure 9.6 shows simulated versus observed seasonal cycles at
Mauna Loa, Hawaii and Point Barrow,Alaska (‘mlo’and ‘brw’
in Figure 9.5). The Hadley Centre models simulate too small an
amplitude but the correct phase of the seasonal cycle at Mauna

Loa (Figure 9.6; Cadule et al., 2009), whereas at Barrow the
simulated amplitude is good but the phase is poor – in
particular, the spring drawdown of CO2 happens too early.
LOOP tends to generally overestimate the amplitude of the
seasonal cycle at monitoring stations, but the phase is in better
agreement with observations.

Further (offline) studies applying JULES at individual
FLUXNET sites led to improvements in leaf seasonality in the
Hadley model which are now implemented in JULES. Figure
9.7 illustrates these improvements using the Harvard forest
FLUXNET site (see Harvard in Figure 9.3) as a test case.

River flows produced by the TRIP river routing scheme have
also been evaluated in successive versions of the Hadley
Centre model (Falloon et al., 2007). The coupled models have
surprisingly good overall skill in predicting river flows,
successfully capturing the latitudinal patterns as well as
seasonal cycles for the world’s largest river basins.

9.1.4 Global risk analysis using LPJmL

A method of mapping probabilistic impacts information was
developed by Scholze et al. (2006) and further elaborated for
a preliminary (see Deliverable 6.12 at: http://www.ensembles-
eu.org) and final global risk analysis. In the results shown
here, the LPJmLmodel was forced with the projected climatic
patterns from seventeen general circulation models (i.e., the
ENSEMBLES RT2a stream 1 ensemble), interpolated to a
1.0° × 1.0° global grid and normalised to the observed CRU
TS2.1 climatology (1961–1990 period).

It was found that global warming by 2°C will have important
impacts on many biospheric and hydrological processes. For
example, carbon stores (in vegetation and soil) and net
primary production (NPP) in these model runs consistently
increase by 20–30% due primarily to the CO2 fertilisation
effect, and also to regionally increased precipitation and
increased temperature in high-latitude regions. On the other
hand, carbon losses in heterotrophic respiration increase as
well (driven partly by the higher NPP and partly by the
additional stimulation of decomposition at higher
temperatures), and the incidence of fire (with associated
carbon loss) increases dramatically. Total river runoff tends to
increase, at global and continental scales, in a warmer world.
However, this increase is geographically restricted to high
northern latitudes and some tropical regions. Runoff decreases
are expected in mid-latitudes, which could potentially pose
serious threats to regional water security. The key quantitative
results from the global risk analysis are summarised in Figure
9.8.

The model results can be used in a variety of ways to illustrate
the risks of different degrees of global warming. For example,
Figure 9.9 shows the increase in risk of increasing or
decreasing freshwater supplies between climate change
scenarios giving a 3°C global warming, compared with
scenarios giving a 2°C warming. This result shows starkly the
increasing risks of freshwater scarcity with increasing degrees
of climate change for many Mediterranean-type and other
subtropical regions.

Figure 9.6: Mean seasonal cycle of CO2 at Mauna Loa, Hawaii (top)
and Point Barrow, Alaska (bottom): observed, and as simulated by
coupled climate–carbon cycle models.

Figure 9.7: Sensitivity of simulated seasonal gross primary production
(GPP) at Harvard forest to the representation of phenology in JULES.
Dashed line: GPP as measured. Black: JULES with phenology off.
Green: standard JULES phenology. Red: parameters set to delay the
onset of greening. Blue: parameters set to reduce the rate of leaf
growth in spring.



9.1.5 Assessment of climate impacts: some
examples

Offline analyses

LPJmL was used to estimate the global carbon and water
balance throughout the 20th century, along with the effects of
anthropogenic land-use changes. It was found, for example, that
land-cover and land-use changes increased global runoff by
1.7% over the past century, while irrigation decreased discharge
by 0.3%. In some regions these effects exceeded the effects of
precipitation trends.

An important finding of this work is that the majority of global
food production relies on so-called ‘green water’, i.e., the
precipitation water stored in the soil and used by plants. ‘Blue
water’, the water withdrawn from rivers, reservoirs and
groundwater for irrigation, is an important resource only in

intensively irrigated regions. These findings highlight an
important principle: that any comprehensive assessment of
freshwater resources and scarcity must include the green water
resource. Estimates of future increases in food production also
need to account for the potential of better water management in
non-irrigated agriculture (Rost et al., 2008a, 2008b).

Online analyses

Hadley Centre coupled model runs were used to assess the
impacts of climate change on ecosystem services including net
primary production (NPP) and water supply (see ENSEMBLES
Deliverable 6.18 at http://www.ensembles-eu.org/deliver-
ables.html). A perturbed-physics climate model ensemble was
used, consisting of 44 versions of the HadSM3 model (a model
version with a ‘slab’ ocean which is faster to run than the fully
coupledmodel). The versions differ in the values assigned to key
meteorological parameters. HadSM3 includes a land surface
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Figure 9.8: Summary of the global risk analysis using LPJmL for 2° mean global warming. Changes are shown as percentages relative to 1971–
2000, at times when mean global warming reaches 2°.

Figure 9.9: Number of scenarios showing a further increase or decrease in freshwater runoff for 3°C global warming, as compared to 2°C.
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scheme that is a forerunner of JULES: it simulates plant
physiological processes, but not changing vegetation types. The
parameters determining the physiological response of NPP to
changes in atmospheric CO2 were not varied within the
ensemble, so the ensemble provides information about the
uncertainties in climate change itself. The ensemble design was
also used to highlight the relative importance of plant
physiological responses to CO2 (Phys) and plant responses to
physical drivers of climate (Rad) in determining NPP, runoff
and precipitation over land. To separate the physiological and
climatic effects, a further ensemble of simulations was
performed in which the plant physiological calculations in the
doubled-CO2 simulations used the control (pre-industrial) CO2

concentration. Results are presented in Betts et al. (2007).

The ensemble-mean NPP response to climate change was an
increase in global mean NPP of about 0.2 kg C m-2 yr-1. Most
regions showed an increase. The boreal forests, India and China
showed increases of about 0.3 kg C m-2 yr-1, the temperate
agricultural regions 0.2 kmCm-2 yr-1, and the tropical forests of
Africa and South EastAsia 0.6 kmCm-2 yr-1 and above. Central
and western Amazonia showed a mean NPP increase of up to
0.3 km C m-2 yr-1. However, the mean NPP decreased by about
0.1 kmCm-2 yr-1 along the southern coast of theMediterranean,
across the Middle East, and in south-west Africa. NPP also
decreased along the north-eastern coast of SouthAmerica, by as
much as 0.3 km Cm-2 yr-1 in some areas. The range of regional
NPP response across the ensemble was especially large in
Amazonia, where the 5–95% percentile range was over 0.9 km
C m-2 yr-1. This range reflects very large uncertainties in the
precipitation changes simulated in that region, ranging from a
small drying in the north-east and a wetting in the rest of the
basin, to a major drying extending across most of the basin.

These results suggest that although a global mean increase in
NPP under doubled-CO2 climate change seems likely, the
climate-related uncertainty in regional NPP change is larger
than the mean change in many regions.

The physiological effect of doubled CO2 concentrations on plant
transpiration increases simulated global mean runoff by 6%
relative to pre-industrial levels (Betts et al., 2007). This is an
important increase, comparable in magnitude to the effect of
radiatively forced climate change on transpiration.Assessments
of the effect of increasing carbon dioxide concentrations on the
hydrological cycle that only consider radiative forcing will
therefore tend to underestimate future increases in runoff and
overestimate decreases.

Figure 9.10 shows a range of effects of the ‘antitranspirant’
property of CO2 on the global hydrological cycle. These include
increased land precipitation but also increased warming, which
is probably caused by a combination of reduced transpiration
and increased vegetation cover.

9.1.6 Lessons learned and future research
directions

Thework done in Research Theme 6 has shown the potential for
DGVMs (offline or online) to provide a credible regional to
global-scale modelling capability for the managed terrestrial
biosphere, and (in online mode) for the potential effects of land-
use changes on climate. This work has established the
participating DGVMs as world leaders in modelling real-world
ecosystems, andwill allow an enormous range of questions to be
answered regarding the implications of land use. The online

Figure 9.10: Impact of physiological forcing on global mean runoff, precipitation and temperature: (a) frequency distribution of simulated changes
in global mean runoff due to doubling of CO2 in a large climate model ensemble, with physiological forcing included (RADPHYS) and excluded
(RAD); (b) as for (a) but for precipitation over land; (c) as for (a) but for near-surface air temperature over land; (d) global mean runoff changes
versus global land mean precipitation changes.



models include a consistent treatment of carbon, water and
energy cycle feedbacks that can be exploited, for example, to
analyse potential unintended consequences ofmeasures designed
for climate mitigation.

Another important lesson from the impacts analyses is the
sensitivity of runoff, and therefore freshwater supplies
(especially in regions already under water stress), to changes in
atmospheric CO2 concentration as well as changes in climate.A
first-order prediction from these analyses is that freshwater
resources may be less limited than previously assumed under
future global warming scenarios (although there is nevertheless
an increased risk of drought in certain regions). A further
consequence is that the practice of assessing the climate-forcing
potential of all greenhouse gases in terms of their radiative
forcing potential, relative to CO2, does not accurately reflect the
relative effects of different greenhouse gases on freshwater
supply. This point reinforces arguments based on other grounds,
such as the very different lifetimes of different greenhouse
gases, for a more differentiated analysis of future emissions
trajectories aimed at climate stabilisation which does not rely
on the problematic concept of CO2 ‘equivalent’.

Finally, the benchmarking work (both offline and online)
provides an optimistic message with regard to uncertainties in
the land-surface component of Earth system models, as it has
shown that deficient aspects of models can be pinpointed and
corrected. The power of setting up benchmarks has been
demonstrated for key large-scale properties of the carbon, water
and energy cycles based on observations (both ground- and
space-based) and the huge importance of continued high-
precision monitoring of seasonal cycles, interannual variability
and long-term trends in the atmosphere.When the C4MIP results
were published, most of the land carbon cycle models involved
had never been subjected to this kind of evaluation. The
evaluation tests that have been set up within this project should
provide an international benchmark test which, in future, all land
surface models will be expected to comply with. Future work in
this direction should further widen the scope of these evaluations
and, in the long run, aim to establish a closer cooperation
between the modelling and observational communities.

9.2 Impacts of extreme weather events and
evaluating the risks of impact

9.2.1 Introduction

The climate model projections conducted during the
ENSEMBLES project are described in earlier sections of this
report. One objective of these new model runs has been to
deliver probabilistic projections of future climate (an Ensemble
Prediction System), accounting for a range of uncertainties in
modelling of the climate system. This section describes some of
the opportunities and challenges offered by such climate
projections for studying the impacts of climate change.
Researchers focused their efforts on alternative methods of
applying climate projections to allow future impacts to be
considered in terms of risk. Most policy makers are familiar
with decision making under uncertainty, and approaches for
addressing adaptation to climate change make repeated
reference to methods of risk assessment.

Impacts have been studied using a range of mathematical
models for estimating how climate change may affect
agricultural crops, water resources, energy demand, forests,
permafrost, human health and infrastructure. Some models are
mechanistic, describing processes such as plant growth,
leaching of soils and runoff; while others are statistically based,
such as for permafrost or forest fire. The models operate at
spatial scales ranging from site, through river basin, to national
and European, and at time resolutions ranging from sub-daily
through to annual. The analysis of impacts comprised twomain
groups of studies applying ENSEMBLES climate projections 1
(Figure 9.11).
1. Impacts of changes in climatic variability and extreme

weather events.
2. A response surface approach for assessing risks of impacts.

9.2.2 Impacts of changes in climatic variability and
extremes

Some of the most damaging and costly impacts of climate
change are expected to be manifest through extreme weather
events. These are weather occurrences such as heavy rainfall,
drought, severe cold, heatwaves and storms that can result in
damage to natural ecosystems, forests, agriculture, infrastructure
or human health and welfare. Extreme events, by definition, are
rare, but in a changing climate their frequency and/or intensity
may alter. Impact models have been used in ENSEMBLES to
define the nature of these extreme events in different sectors
under present-day climate, and then to evaluate how these may
change in the future, using projections from the latest generation
of Global and Regional Climate Models (Figure 9.11).

Five examples are presented here:
1. property damage due to wind-storms in western and central

Europe;
2. effects of climate warming on potential energy demand for

space heating and cooling in the Mediterranean;
3. forest fire risk in Fennoscandia;
4. forest damage due to low temperature and pests in Sweden;
5. potential impacts of extreme weather in Poland.

The results obtained in each of these examples are critically
dependent on daily or sub-daily time-scale information from
climate models, and each example highlights new insights
gained by applying ENSEMBLES climate simulations.

Property damage due to wind storms

The GCM and RCM scenario simulations produced in RT2A
and RT2B were analysed with respect to future changes in
wind-storm risk and related loss potentials. In most simulations,
as well as in the ensemble mean of multi-model simulations,
increased extreme wind speeds were found over northern parts
of central and western Europe under increased greenhouse gas
forcing. Decreased values of extreme wind speeds were
projected for southern Europe. Storm loss potentials were
calculated by applying a storm loss regression model.
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1 The results presented in this section are preliminary – studies are still ongoing,
and so far few have been published. For this reason, and to aid readability,
references are not included in this section.
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Consistent with the changes in extreme wind speeds, higher
storm losses were estimated for western and particularly for
central Europe, assuming that no adaptation to the changed
wind climate takes place (Figure 9.12).

Uncertainties in the range of changes in loss potential are
accounted for by using two different measures. First, the
standard deviation of the change signals across the different
climate model simulations have been computed (parentheses in
Figure 9.12), revealing values of the same order as the mean
changes for most regions considered. However, as an
uncertainty measure, the standard deviation is strongly
influenced by outliers. An alternative measure of uncertainty
considers the arbitrariness of the multi-model ensembles used in

the study. There are numerous combinations of model outputs
that might have been selected as ensembles among the nine
GCM and eight RCM simulations, in addition to the nine-
member and eight-member ensembles represented in Table 5.1.
For example, if only eight of the nine GCMs had been chosen
as ensembles, there are nine possible combinations of these;
selecting ensembles of seven GCMs from nine gives 36 possible
combinations, and so on. Overall there are 511 possible
ensemble combinations comprising between one and nine GCM
members. Consideration of the signals from all of these
combinations results in a relatively symmetrical distribution of
possible change signals around the ensemble mean and further
allows for the construction of probabilistic information about
the range of expected changes (Figure 9.13). For example,

Figure 9.11: Two methods of impact assessment using outputs from the Ensemble Prediction System: either using model-based scenarios
applied to impact models for estimating impacts of extreme events or using probabilistic projections combined with impact response surfaces for
evaluating impact risks. Impacts illustrated in this report are listed alongside the respective method applied.

Figure 9.12: Relative changes (%) of mean annual storm loss potential
based on nine GCM (upper row) and eight RCM (bottom row)
simulations for the end of the 21st century (2071–2100) relative to
recent climate conditions (1961–2000), assuming the SRES A1B
emissions scenario. Values in parentheses are inter-model standard
deviations.

Figure 9.13: Anthropogenic climate change (ACC) signal in storm loss
potential over Germany by 2071–2100 relative to 1961–2000 under an
A1B emissions scenario, expressed probabilistically based on
ensembles comprising all possible combinations of available
ENSEMBLES simulations by GCMs (red curve), RCMs (green dotted
curve) and all models (blue dotted curve).



extending this analysis to include additionally the eight RCM
simulations produces 131,071 different sub-ensembles based
on seventeen individual model simulations. Using this
distribution, as calculated for grid boxes over Germany for the
end of the 21st century, a mean increase in loss potential of 25%
can be estimated, with a 90% confidence interval of between
+13% and +37%.

Note, however, that these probabilities are conditional on the
range of GCM projections provided in the ENSEMBLES
project. This range of projections is not as wide, for example, as
the range sampled in the IPCC Fourth Assessment Report,
which considered around twenty GCMs and three emissions
scenarios (IPCC, 2007). Furthermore, the ensembles formed
using both GCM and RCM outputs cannot all be regarded as
independent, as some of the RCM simulations made use of
boundary conditions provided by one of the GCMs.

Potential energy demand for space heating and
cooling in the Mediterranean

In the Mediterranean region under present-day conditions the
maximum values of energy consumption are related to cold
weather in winter (for heating) and hot weather in summer (for
cooling). With higher temperatures under a changing climate, it
would therefore be logical to expect decreased heating demand
during the colder part of the year and increased cooling demand
in the warmer part. This hypothesis has been examined using
daily temperature outputs from simulations conducted in
ENSEMBLES with six Regional Climate Models (RCMs)

assuming the A1B emissions scenario. Simulated temperatures
representing the present (for 1960–1989) and the future (2021–
2050) were extracted for theMediterranean region at a horizontal
resolution of 25 × 25 km. See ENSEMBLES Deliverable 6.19
at www.ensembles-eu.org/deliverables.html; Giannakopoulos et
al., 2009.

Ameasure that is commonly used as a proxy for energy demand
is accumulated temperature. This can be defined as the difference
in mean daily temperature from a threshold or base temperature
at which energy consumption is at a minimum. During the
warmer part of the year, temperatures commonly exceed a base
temperature above which cooling is activated. By accumulating
the daily exceedances during a given period, an indication of total
energy demand can be estimated for that period (cooling degree
days or CDD). Similarly, the sum of daily temperature departures
below a temperature threshold is a useful proxy for heating
demand in the colder part of the year (heating degree days or
HDD). In this study, based on earlier work in southern Europe,
15°C is used as the base temperature for estimating HDD, and
25°C as the corresponding threshold for CDD.

Figure 9.14 presents changes in annual CDD and HDD up to
2021–2050.An increase in cooling requirement is indicated in all
regions, with large increases over southern Spain, eastern Greece
and western Turkey, and the largest increases over Cyprus and
NorthAfrica. Smaller changes are estimated for Sardinia, Corsica
and theAegean Islands (Figure 9.14a). In contrast, heating demand
declines overmuch of the region (Figure 9.14b), but less so in the
coastal regions that do not currently experience cold winters.
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Figure 9.15: Mean change in the number of days with a large cooling demand (>5°Cd) between the baseline and 2021–2050 periods (a) and inter-
model standard deviation of the changes (b).

(a) Mean change in heavy cooling days (b) Standard deviation of change

Figure 9.14: Projected change in potential annual energy demand between 1960–1989 and 2021–2050 for (a) cooling and (b) heating, based on
accumulated temperature (°Cd).

(a) Change in cooling degree days (CDD) (b) Change in heating degree days (HDD)
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Another dimension of cooling demand is illustrated in Figure
9.15, which showsmean change in the number of days requiring
cooling of more than 5°C by 2021–2050 (Figure 9.15a) as well
as the standard deviation of the changes as a measure of inter-
model spread (Figure 9.15b). Over NorthAfrica, more than one
additional month of heavy cooling would be required, while
over parts of southern Spain and Italy, eastern Greece, western
Turkey and Cyprus, 20 more days would be needed. In both
cases this represents more than a doubling compared with today,
suggesting a need to plan for additional generating capacity to
meet the extra demand. The inter-model standard deviation is
considerably smaller than the mean change in most regions,
implying that the signal of change is fairly robust.

Forest fire risk in Fennoscandia

Fire is one of the dominant forms of disturbance in the boreal
forest and in the transition zone between forest and tundra.
During most of the year there is no risk of forest fire, due to the
extended presence of snow cover and the increased moisture of
the surface during autumn. However, from May until August
there are periods when the forest fire risk is high. The climate
changes anticipated for the boreal zone in the future could
influence both fire frequency and severity, as summers become
warmer and evaporation increases.

An assessment of the fire danger rating has been conducted
applying the Finnish Forest Fire Index (FFI). In computing the
index, the volumetric moisture of a 60 mm thick surface layer is
estimated using precipitation and potential evaporation data. The
surface moisture is scaled to FFI values that vary between 1 and
6; where index values above 4 (corresponding to a volumetric
moisture of 20%) represent a high forest fire risk, while an index
value above 5 corresponds to a very high fire danger. Projections
from a 100-year simulation with the SMHI-RCA Regional
Climate Model starting from 2001 were used for determining
future changes in fire danger over Finland, Sweden and the Baltic
region, focusing on the fire season,April–September. In addition,
sixteen locations have been selected and further statistical
analyses have been performed in order to obtain the regional and
temporal variation in fire danger. Time-series of the annual
number of days with FFI above 4 and 5 have been studied both
for these stations and using gridded data for the entire region.

Based on the analysis, a distinct trend towards an increased
danger of fire can be observed. For all sixteen stations, the
projected change in fire risk index by 2100 is statistically
significant at the 95% confidence level. The number of days
with very high fire risk is estimated to almost double during
this century under theA2 emissions scenario (Figure 9.16, left).
The changes indicated for a B2 emissions scenario are slightly
moderated (Figure 9.16, right). The largest increases are
registered for the northernmost stations (north of latitude
65°N).

Forest damage due to low temperature and pests in
Sweden

Regional climate projections provide information on changes
in temperature and precipitation regimes, including the
frequency and severity of extreme events. The changes can alter
the basic conditions for tree growth and the risk of large-scale
ecosystem disturbance. Norway spruce, which is an
economically important forest tree species in northern and
central Europe, has twomain vulnerabilities related to weather:
frost damage after bud burst, and spruce bark beetle attacks
following wind-storm damage. Both these damage types are
related to specific weather situations rather than general climatic
conditions, and an ensemble approach is useful in order to
increase the sample size of weather situations and to obtain a
measure of model variation.

In a warmer climate, the spring onset of vegetation processes
begins earlier in the season when the sun is still low. Thus the
earlier budburst exposes trees to an increased risk of radiation
frost during long nights as well as winter cold air outbreaks, in
some geographical areas actually increasing the frost risk
despite generally warmer winters (Figure 9.17). See also case
study in Section 6.6.4.

The spruce bark beetle can kill millions of trees during large
outbreaks, which occur after wind-storm damage that produces
ample breeding substrates.Warmweather conditions allow for a
rapid development of the new generation.Awarmer climate can
therefore lead to increased frequency of late summer swarming,
producing a second generation in southern Scandinavia and a
third generation in central Europe (Figure 9.18).

Figure 9.16: Number of days with very high forest fire risk projected for northern Europe during the 21st century. Results for latitudinal zones are
averages from station data.



Potential impacts of changes in extreme weather on
crop yields, water resources and health in Poland

The Institute for Agricultural and Forest Environment of the
Polish Academy of Sciences used projections from six
ENSEMBLESRegional ClimateModel simulations to quantify
selected extreme-weather indices for Poland, of importance for
the agricultural, water and health sectors, for two time horizons

– a reference period (1961–1990) and a future period (2061–
2090). Climate changes, and in particular increases in
temperature and changes in rainfall, have strong impacts on
agriculture in Poland, and crop yield depends critically on water
availability during the plant development phase. For two
important crops, potatoes and wheat, decreases in yield are
projected for most of the country. The national means of change
in yield are: −2.175 t/ha and −0.539 t/ha, respectively.
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Figure 9.17: Projected changes in frequency of frost events after onset of vegetation processes for the periods 2011–2040 and 2070–2098
compared to the reference period 1961–1990, based on climate projections from one Regional Climate Model (SMHI-RCA3) nested in seven
Global Climate Models.

Figure 9.18: Projected changes in swarming frequency of the first and second generation of spruce bark beetle for the periods 2011–2040 and
2070–2098 compared to the reference period 1961–1990, based on climate projections from one Regional Climate Model (SMHI-RCA3) nested
in seven Global Climate Models.
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Increasing water deficit problems are projected in Poland under
a changing climate. Already, in the present climate, during
summer evapotranspiration exceeds precipitation over most of
the country, hence the water storage (in surface water bodies,
groundwater and soil) is depleted (Figure 9.19a). Summer
precipitation deficit is projected to increase considerably in the
future (Figure 9.19b), so that the additional water supplies
(above precipitation) needed to realise the full potential for crop
production are estimated to increase by half between the
reference and future time periods (not shown).

As regards climate and health, the value of a composite index
(computed as the product of the number of senior discomfort
days recording a high heat index and the number of senior
citizens aged 65 years or more) is projected to increase between
two- and six-fold in 100 years. This is an effect of both increase
in the number of senior discomfort days (nearly four times) and
the number of senior citizens (over two times).

9.2.3 Assessing risks of impacts

Amajor novelty of the ENSEMBLES multi-model projections
is that they offer a framework for generating probabilistic
projections of future climate. This involves fitting a probability
density function (PDF) to a large ensemble of individual
projections of a given climate variable (Figure 9.11). For
example, PDFs have been produced in the ENSEMBLES
project for representing uncertainties among multi-model
simulations with Regional Climate Models (RCMs) and with
Atmosphere–Ocean General Circulation Models (AOGCMs).
PDFs representing a wider set of uncertainties across climate
models of varied complexity and incorporating observational
constraints are also available in ENSEMBLES from the
UKCP09 (UKCP, 2009) project of the UK Met Office Hadley
Centre (MOHC), subsequently referred to as ‘MOHC
ENSEMBLES probabilistic projections’, cf. Section 3.2.2.

A straightforward way to evaluate impacts is to run an impact
modelwith each of the climate projections used to create the PDFs
and then to determine the risk of impact on the basis of ensemble

impact outcomes (Figure 9.11, lower dashed arrow). However,
given the large number of ensemble projections required for such
a procedure, thismay be precluded on practical grounds, especially
for more complex impact models. An alternative method is to
construct an impact response surface from a sensitivity analysis
of the impactmodelwith respect to key climatic variables (Figure
9.11, upper dashed arrow) and to superimpose onto this a
probabilistic representation of projected changes in these same
climatic variables. If the significance of an impact is judged
relative to an impact threshold (i.e., some level of impact deemed
unacceptable by a decision maker), then the risk of this threshold
being exceeded can be estimated as the proportion of the
superimposed climate PDF in the exceedance zone.

Five examples are presented to illustrate the response surface
approach:
1. changes in exceedance of high or low lake water levels in

Fennoscandia;
2. changes in water availability in large European river

catchments;
3. the disappearance of permafrost features in northern

Fennoscandia;
4. changes in durumwheat yields in theMediterranean region;
5. estimates of nitrogen leaching and wheat yields in different

regions of Europe.

Exceedance of low lake water levels in
Fennoscandia

Critical thresholds for hydrological systems vary between
basins.Although river discharge is generally the most important
variable for consideration, time and space scales, and local
topography play important roles. For Nordic conditions, with
many lakes, water level can also be a critical factor. This is of
particular consequence for the large natural lakes where
outflows are nowadays regulated for optimal use of the water as
a resource. Excessively high lake levels are a concern for
flooding, while low levels pose a threat to availability and
quality of water supply, and navigation. The specifics of each
hydrological basin must ideally be taken into account in
resolving where critical thresholds lie.

Figure 9.19: Changes in climatic water balance in summer in Poland: for the period 1961–1990 (a) versus the period 2061–2090 (b).



The city of Stockholm is centred at the outflow point where
Lake Mälaren flows into the Baltic Sea. This large lake is a
major source of drinking water and a means of transport for
cities along its shores. A critical threshold for the lake was
identified in terms of low water level. This was set to ‘50
consecutive days with water levels equal to or below 4.15 m’,
the level where both navigation becomes difficult and the intake
of water for local water supply can be inhibited. It also
represents a higher risk for saltwater intrusion from the Baltic
Sea.

Although there is already a risk of low water levels in today’s
climate, this could increase considerably with a changing
climate, as seen in the threshold response in Figure 9.20.
Although annual precipitation shows a slight increase, summer
precipitation is projected to decrease. This basin is therefore
particularly sensitive to how seasonal precipitation changes are
represented in creating response surfaces. Note that the results
shown here are preliminary and do not take into account the full
range of the ENSEMBLES simulations.

Water availability in large European river
catchments

We analysed the risk of societal vulnerability thresholds of
water availability being exceeded in eighteen major river basins
in Europe under climate change projections from six RCMs for
the year 2100 under theA1B scenario. Vulnerability thresholds
were based on high flow (Q20) and low flow (Q80) indicators as
well as indicators of water stress (withdrawal to availability –
w.t.a.; water availability index – w.a.i.). These, together with
projected climate changes for each basin, are superimposed onto
response surfaces of water availability (Figure 9.21). The
vulnerability classification is based on the absolute number of
climate modelling projections under which the above described
thresholds are violated in 2100.

The most vulnerable basins in Europe are the Tiber and Vistula
basins because both the low flow threshold and water stress
thresholds are violated under all of the climate scenario
simulations. For example, the Vistula and Tiber fall into the
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(a) Annual inflow (b) Low water level

Figure 9.20: Impact response surfaces for Lake Mälaren in Sweden: (a) mean annual inflow to the lake as a percentage of present day inflow;
(b) likelihood (in percent) of summer water level below the target operating threshold for a consecutive period of 50 days. Climate projections
are depicted as probability density plots for the period 2031–2050 based on the MOHC ENSEMBLES probabilistic projections. The coloured
area encloses approximately 90% of all projected outcomes. Also shown are projections from five RCM simulations (coloured dots). Impact
response surfaces were created from some 300 simulations using the HBV hydrological model.

Figure 9.21: Response surfaces of water availability for three European catchments with societal vulnerability thresholds and RCM projections of
climate change for 2071–2100 under the A1B scenario.
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second highest (medium) water stress class, based on the w.a.i.
The Danube Basin might be facing lower water availability in
the future, as projected by five of the six RCMs. In general,
southern European basins suffer from decreasing availability,
while northern basins have to cope with increasing water
availability, even violating high flow thresholds (not shown).
Climate change projections for the central European basins are
scattered around the ‘1’-line, showing both projections of
increase as well as decrease of water availability.

Risk of palsa mire disappearance in Fennoscandia

Palsas are mounds with a permanently frozen core that occur at
the edge of the permafrost zone across the circumpolar north.
They are ecologically valuable for birds, representing a priority
habitat listed by the EU Habitats Directive. There is evidence
that they are already disappearing and this is presumed to be
due to observed regional warming.

Figure 9.22a is an impact response surface showing the area
climatically suitable for palsas with respect to changes in two key
climate variables, mean annual temperature and mean annual
precipitation, relative to the 1961–1990 observed climate. A
critical threshold of impactwas selected as the total disappearance
of suitable area for palsas (white area in Figure 9.22a).

Scatter plots of projected mean annual temperature and
precipitation change over Fennoscandia for the A1B emissions
scenario were produced from the MOHC ENSEMBLES
probabilistic projections and presented as climate surfaces for
20-year periods at decadal intervals throughout the 21st century.
These were then superimposed on the impact response surface
(Figure 9.22a). The climate surface falling in the area beyond
the −100% isoline represents the risk of total disappearance of
palsas at different time periods in the future. Figure 9.22b
indicates that it is likely (>66%) that all suitable areas will
disappear by the end of the 21st century under theA1B emissions
scenario.

Risk of wheat yield shortfall in the Mediterranean
region

Durum wheat is a rain-fed crop that it is widely cultivated over
the Mediterranean Basin. Projected climate changes in this
region, in particular rising temperature and decreasing rainfall,
may seriously compromise durum wheat yields, thus
representing a serious threat for the cultivation of such a
typical Mediterranean crop.

Awheat simulation model (SIRIUS Quality) was used to create
yield response surfaces with respect to variations inmean annual
temperature and mean annual precipitation for each climate
model grid box in the region. 10,000 projections of the same
climate variables, sampled from the joint PDF for the A1B
scenario from the MOHC ENSEMBLES probabilistic
projections, were overlaid on the yield response surfaces to
estimate the future yield distribution at each grid box. A critical
yield threshold was defined as the 20th percentile of yields
estimated for present-day climate, and the future risk of yield
shortfall was estimated as the relative frequency of yields
projected to fall below this threshold according to the climate
projections. Baseline climate in the regionwas represented using
the ENSEMBLES E-OBS 25 km interpolated daily
observational dataset for the period 1961-1990.

Figure 9.23 depicts the change in risk of yield shortfall for
four 20-year periods in the future under climate projected for
theA1B scenario compared with the present-day. Green areas
indicate a decreased risk of shortfall; pink and red areas show
an increased risk. In contrast to previous studies suggesting
that the beneficial effects of elevated atmospheric CO2

concentration over the next few decades would outweigh the
detrimental effects of the early stages of climatic warming
and drying, the results here are of more concern (Figure
9.23a). They indicate declining risk over only a few small
areas at the northern fringes of the Mediterranean zone. For
the majority of the case study area, there is increased risk of

Figure 9.22: (a) Impact response surface showing modelled percentage change in area of suitability for palsa mires in Fennoscandia as a function
of changes in mean annual temperature and precipitation relative to 1961–1990 (isolines). A joint PDF of future climate by the period 2040–2060
(coloured areas) is superimposed, about half of which lies in the area exceeding the −100% isoline (i.e., complete loss of palsa mire suitability). (b)
Probability of complete loss of palsa suitability at different future time periods. The value for 2040-2060 taken from (a) is circled.

(b)(a)



yield shortfall, which becomes more severe as the century
progresses, reaching a maximum by mid-century (Figure
9.23b,c) before declining somewhat towards the end of the
century Figure 13d). Note that there are some local gaps in
coverage of both observed and projected climate (e.g. over
Sardinia, and parts of southern Italy). These, and areas above
700m elevation, where durum wheat is rarely cultivated, were
excluded from the analysis and are indicated as white areas on
the maps.

A probabilistic assessment of climate change
impacts on wheat yield and nitrogen leaching

Climatic conditions have a high impact on both crop yields and
nutrient losses from arable land. To assess the effects of future
climate change on crop yields and nitrate leaching, detailed sim-
ulation under predicted future climatic conditions has been
conducted. Continuous winter wheat grown on two soil types –
sandy (S) and sandy loam (SL) – under conditions representa-
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Figure 9.23: Spatial plots of changes in durum wheat risk of yield shortfall by: (a) 2010-2030, (b) 2031-2050, (c) 2051- 2070 and (d) 2071-2090,
relative to the baseline (1961-1990). Shortfall is defined as yields below the 20th percentile yield calculated for the present-day period 1990-2010.
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Figure 9.24: DAISY model simulated probability response functions (isolines) of N leaching above threshold values (upper panels) and probability
response functions of yield reduction >20% of mean yields (lower panels) calculated for south Portugal (a) and Denmark (b). Coloured contours
show the relative probability of climate change outcomes calculated for binned classes of changes in temperature (1°C intervals) and precipitation
(10% intervals) and then interpolated. (c) Calculated cumulative probability of N leaching above 25 and 40 kg N/ha for a sandy loam and sandy soil,
respectively, and yield reduction >20% of average yields. Calculations are for decadal intervals from 2010 to 2090 and for combinations of soil type
– sand (S) and sandy loam (SL) – and methods to change precipitation – proportional (P-corr.) and seasonal correction (S-corr.).
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tive of Denmark and southern Portugal were simulated using
the crop, soil, nitrogen simulation model DAISY. The model
was used to provide response functions for effects of changes
in annual temperature and rainfall on grain yield and nitrate
leaching. Two different methods were tested to obtain daily val-
ues of rainfall changes; either a straightforward correction
method where the same correction is applied to all days in the
year, or a seasonal correction where seasonal patterns in rain-
fall change for the specific site are used to estimate the
correction for rainfall change. To obtain a measure of the pre-
dicted climate effect on N leaching and yields, a cumulative
probability of N leaching above arbitrary threshold values
(25 kg N/ha for sandy loamy soils and 40 kg N/ha for sandy
soils) and the cumulative probability of an arbitrary reduction
in yield of >20% were calculated for each combination of soil,
climate data and region. The results were combined with future
climate projections for the years 2000–2100 using PDFs
obtained in theMOHC ENSEMBLES probabilistic projections.

In Figure 9.24a,b, examples of PDFs representing the
probability of climate change for the years 2030–2050 are
superimposed on impact response functions calculated with the
DAISYmodel for N leaching (upper panels) and yield reduction
(lower panels) for southern Portugal (a) and Denmark (b).
Figure 9.24c shows the calculated cumulative probability for N
leaching (upper panel) and yield reduction (lower panel) for the
years 2010–2090 in Denmark. Each point in Figure 9.24c is
calculated by combining PDFs describing the probability of
climate change with the DAISY response functions from Figure
9.24b. In general, the responses to climate change of both N
losses and yields are different in the two regions. For southern
Portugal (not shown) the probability of N leaching above
threshold values is almost unchanged under future climate
conditions, whereas for Denmark (Figure 9.24c) an increase for
the sandy soils and a slight decrease for sandy loamy soils are
obtained. The probability of a yield reduction exceeding 20% is
seen to increase for sandy soils in Denmark during the whole
period. The lowest risk of yield shortfall was found for sandy
loam soils, which is believed to be due to the higher root zone
capacity of this soil type, which reduces periods with plant
water stress, and thereby minimises the effect of periods with
low precipitation.

9.3 Impact modelling at seasonal to
decadal time-scales

9.3.1 Introduction

The research here1 builds on pioneering work started in
DEMETER, introducing a wider range of impacts to the
utilisation of multi-model ensemble prediction systems at
seasonal scale in preparation for time-scales beyond this. Many
operational activities, for example energy demand, insurance
risk, health risk and agricultural yield, have a significant
operational need for forecasts of risk, demand or yield for the
forthcoming season. In Europe it may be information in terms
of relative frequency of winter storms or cold spells during the

winter, whereas in the tropics, especially Africa, it may be the
amount of rain in the forthcoming rainy season. The rains lead
to impacts on crop yield and thus food security and also impact
on the relative risk of disease, especially from vector-borne
diseases such as malaria.

We also transferred techniques usedwith seasonal-scale forecasts
to work with longer climate time-scales. An example is the use
of a probabilistic approach to represent model uncertainty with
the RCM data for animal health impacts in Europe. Much effort
has been focused on post-processing activity including
downscaling, dressing and weighting, and this has involved
interaction with other Research Themes within the project

We have a strong emphasis on building integrated modelling
systems that are validated with current climate observations,
developed as reanalysis, used to drive the impacts models
forming control runs before using future climate projection runs.
The majority of the work has focused on using the seasonal
ensemble prediction system outputs but with the knowledge
exchange to the model runs using the RCM datasets.

We also see the importance of the portability of an impacts
model, e.g., between seasonal scale and climate change time-
scales – the Liverpool malaria model (LMM) has now been
developed to work with a range driving datasets from different
climate modelling systems.

By using impacts models that make use of daily data from the
ensemble prediction systems, we capture the dynamics of the
climate in a way that is not possible when using monthly or
annual mean values. By dynamic we suggest that the frequency
and timing of meteorological events have a profound influence
on environmental and biological systems when run on a
seasonal basis. It is clear, in some regions, that skill is being
impacted through these dynamics as well as through mean
prediction at seasonal or annual scales.

9.3.2 Research results

In Figure 9.25 it is shown how multi-model ensemble seasonal
hindcasts developed in ENSEMBLES have been incorporated
into an operational crop yield forecasting system for wheat and
other crops in Emilia-Romagna, Italy.

1 The results presented in this section are preliminary – studies are still ongoing,
and so far few have been published. For this reason, and to aid readability,
references are not included in this section.

Figure 9.25: How multi-model ensemble seasonal hindcasts
developed in ENSEMBLES were incorporated into an operational
crop yield forecasting system.



Crop modelling – tropics

This example shows the use of DEMETER seasonal forecasts
in crop yield models for groundnuts in Gujarat. In Figure 9.26
note how closely the modelled yield distribution captures the
observed crop yield. For planning purposes it is important to
show the full range of modelled outcomes to inform the
planning process, as even a relatively small chance of a very
low crop yield, below a locally determined threshold, may
require special contingency and planning action based on
experience of past performance of the integrated modelling
system.

Crop modelling – Europe

The system shown for Emilia-Romagna adapted and developed
an operational crop forecasting system (seen in Figure 9.26) to
use downscaled ENSEMBLES seasonal forecasts. Downscaling
was used so that the spatial resolution of the datasets was as
close as possible to the plot area, as opposed to the several-
hundred-kilometre resolution of the seasonal forecast model
outputs. This example investigates the reduction in soil moisture
under a field of cultivated kiwi fruit. The models driven by
seasonal forecast prediction and actual weather observations are
compared with the measured soil moisture. It can be seen in
Figure 9.27 that the spread of the seasonal forecast-driven crop
model reproduces a distribution of soil moisture levels that
captures both the observation-driven and weather stationmodel-
driven results. These early results are promising and the system
may have some skill in the region. Further work extending the
dataset back for 20 years will allow skill scores to be computed
between the weather station control run and ensembles forecast.

The ENSEMBLES project has shown that it has utility in crop
modelling both in Europe and in the Indian subcontinent. The
ability of governments in both regions to have access to a
prediction of crop yields is important for both food security and
for the use in intervention, storage and planning purposes.

Winter wind storms – Europe

Winter wind storms are a major risk in Europe, especially for
insurance companies who need to assess their level of risk for
both commercial and regularity purposes. Figure 9.28 shows
the extended winter (October–April) storm frequency between
a series of modelled datasets. There are model resolution
differences between the data in (b) and (d), which have a lower
resolution than those from the newer model systemwhich is the
core of the ENSEMBLES system in (c) and the reanalysis in
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Figure 9.26: Use of the DEMETER multi-model ensemble for
groundnut yield in Gujarat, 1998 (from Challinor et al., 2005).

Figure 9.27: The comparison between actual tensiometer-based irrigation data (red line) for kiwi fruit at Brisighella (180 m asl), Emilia-Romagna,
Italy, and the assessment of irrigation water needs (box and whiskers), computed using downscaled ENSEMBLES seasonal hindcasts for the JJA
period as input for the CRITERIA water balance model of ARPA Emilia-Romagna, for the years 1996–2005. The multi-model runs use five
models, nine members, and five weather generator replicates (225 member replicates). Blue stars represent the irrigation need computed by the
model using actual weather data.
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(a). The model physics also have a role, with similar model
physics in (a), (b) and (d), whereas the newer data in (c) have
revisedmodel physics. The differences in the distributions show
that direct comparison of modelled wind-storm climatologies
should not be made, but instead calibration techniques need to
be developed. This has led to the development of calibration
techniques which show how to apply development work
undertaken with research model datasets to operational
forecasts.

Forecasting interannual malaria risk

Through ENSEMBLES there has been continued development
of the dynamic malaria model for use with seasonal-scale EPS.
The insights gained have also started to be used for the
application of EPS to other diseases not discussed here. The
malaria model has used it to test both a series of weighting
studies and to test ensemble dressing techniques. The weighting
studies show that, on the whole, the multi-model ensemble
performs as well as anymodel weighted ensemble combination.
The ensemble dressing used a range of dressing techniques,
originally developed by a partner within the consortium;
however, the ensemble dressing work remains inconclusive, as
the improvement in model skill is marginal – but on the other
hand, the dressed ensemble was not found to lose skill either!
The main problem is that to calibrate a once-per-season event
such as the seasonal malaria risk, the number of events in the
model archive is too small to effectively refit the distribution
using techniques that were developed for the much more
plentiful daily maximum temperature analysis.

Further efforts have been undertaken to show the probabilistic
output of the malaria model in a decision-maker recognisable
format. In Figure 9.29, the annual probability of exceeding the

threshold for the upper tercile event is shown. Years where the
event was observed are shown by the solid bars. The decision
maker is encouraged, given the performance of the model for
their region, to decide what probability of the event would
trigger a response and how this probability threshold would
have led to hits, misses and false alarms over previous years.
This example is for malaria forecasts in Botswana.

Major improvements have been seen in the quality of the
seasonal forecasts in ENSEMBLES for use in West Africa
over what was observed with the DEMETER dataset. Grid
points that have high interannual variability in modelled
malaria incidence, i.e., potential epidemic zones in the model
are selected using NCEP reanalysis-driven runs of the
Liverpool malaria model. The geographical position of these
zones should be (1) consistent between each of the seasonal
forecast models and the reanalysis control run and (2) that,
when verified against the reanalysis-driven runs, have some
skill above climatology. The results shown in Figure 9.30
indicate that the majority of these grid points are skilful. In
practice, this shows that the integrated malaria model system
has the potential to give a lead time of 4–6 months from issue.
Such a system could contribute to an early warning system,
giving some indication of those zones that might have a higher
than average epidemic transmission risk in the forthcoming
rainy season. An early warning system would also contain
local knowledge of typical transmission patterns and recent
intervention programmes.

The work in West Africa was undertaken as a joint initiative
between EMSEMBLES and the FP6 AMMA (African
Monsoon Multidisciplinary Analysis) project.

The ENSEMBLES project also provided RCM runs for a large
domain across Africa at 50 km resolution as part of its

Figure 9.28: The extended winter (October–April) storm frequency between a series of modelled datasets: (a) the ERA-40 reanalysis data, (b) the
ECMWF operational seasonal forecasting System-2, (c) the latest ECMWF operational System 3, (d) the DEMETER hindcasts.



collaboration with FP6 AMMA. The LMM was successfully
adapted to run with the daily RCM data. At present only the
current climate control runs have been completed. The RCMs
use ERAINTERIM reanalysis for their boundary conditions and
the coarser resolution ERAINTERIM and NCEP reanalysis-
driven LMM runs are shown for comparison with the
RCM-driven outputs in Figure 9.31. Initial (non-bias-corrected)
results show a good comparison between the RCM-driven runs
and a fair comparison with the reanalysis datasets and known
areas of malaria transmission in West Africa.

Spread of emerging animal diseases captured by
Regional Climate Model data

This work, co-funded with a spin-off project, in cooperation
with veterinary epidemiologists, has advanced the use of
Regional Climate Model (RCM) output to run a Ro disease
transmission model for the spread of bluetongue disease in
sheep and cattle, which has recently emerged in northern
Europe. The plots (not shown) of bluetongue risk for the recent
climate time-slices using the RCMmodel runs forced by ERA-
40 boundary conditions show a very close comparison with
known bluetongue virus outbreaks.

In Figure 9.32 it can be seen that the models predict an increase
in bluetongue disease risk over northern Europe (especially the
UK), south-eastern France, northern Spain, Italy and Greece for
the period 2031–2050. Changes over northern Europe are

mainly related to changes in the bluetongue virus replication
rates related to more favourable temperature conditions,
whereas over southern Europe the change is mainly related to
the spread and increase of the vector, namely the midge,
Culicoides imicola.

Seasonal forecasts for electricity demand – uses of
downscaling

A significant amount of work has been undertaken with the
newly developed downscaling portal. The application here is
the use of downscaling for catchment regions for the power
industry. Generally, in the mid-latitudes, skill from seasonal
forecasts is relatively low or current forecasting systems have no
skill. Through spatial disaggregation of the datasets and the use
of local target data from long-term established weather station
sites, it is possible to both improve the skill in the ensemble
forecasts and provide datasets at local scales, which thus
become useful for impacts studies. The results, produced by the
R&D division of a major European power supplier, are
reanalysed with an enhancement of skill, depending on variable,
location, and season and lead time, as well as the careful choice
of downscaling methods and selection of predictors. It is fair to
say, however, that the field of downscaling seasonal lead time
ensemble prediction systems is still in its infancy. However, the
work completed in ENSEMBLES has shown some potential,
suggesting that with the ongoing improvement in ensemble
seasonal forecasting systems, downscaling will become an
important post-processing step. This will be especially the case
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Figure 9.29: The annual probability of exceeding the threshold for the upper tercile event. The solid columns are where the event is observed.
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Figure 9.30: Skill of ENSEMBLES-driven Liverpool malaria model (LMM) incidence for the above upper tercile event, as measured by ROCSS
relative to the ROCSS of the persistence-type control run (where positive) for grid points categorised as epidemic (mean monthly incidence
>1/100 people, CV>0.5) according to NCEP-driven incidence. May forecast months 4–6 (ASO) 1971–2005 for all ensemble members of the
ENSEMBLES multi-model.
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Figure 9.31: Mean annual malaria incidence for 1990–2007 (cases per 100 people) from the Liverpool malaria model (LMM) for West Africa. The
LMM is run with ERAINTERIM and NCEP reanalysis (top row) and four RCMs for the ERAINTERIM control runs (middle and lower rows).

Figure 9.32: (a) Simulated bluetongue disease risk changes over Europe (%, with respect to 1961–2000) for the delimited summer–autumn
season ASO; (b) bluetongue disease risk index for the season ASO over northern Europe (12°W–18.5°E, 48°N–59°N). The gridded ECA
observations are displayed in black, the control (CTL) (SRES A1B) multi-model ensemble means are displayed in dark blue (red). The light blue
(orange) envelope highlights the multi-model spread in SRES A1B projection runs.



for the use of these data in the mid-latitudes and for impacts
studies and its use by industry, e.g., power supply.

The downscaling results shown in Figure 9.33 are for the
temperature at 2 m in a series of river basins in France. In
general it shows that downscaling makes an improvement in
the forecasting of 2 m temperature compared with the raw data
prior to downscaling.

Figure 9.33: The improvement in temperature prediction following
downscaling for a series of river basins in France, for the upper tercile
event.

9.3.3 Summary impact modelling at seasonal to
decadal time-scales

ENSEMBLES has allowed a wide range of impacts groups to
work with probabilistic seasonal forecasts. Much work has been
undertaken in data post-processing and downscaling. It is
possible that these techniques can add to areas that have
marginal skill, but where forecasts have no skill they cannot
currently be used. The idea of validation of hindcasts against
reanalysis control runs is now firmly established. Impacts
models can now be moved across climate modelling streams,
seasonal EPS to RCMs, and the methods developed and
validated at seasonal scales are now being transferred to longer
climate-change time-scales within the development of seamless
integration of impacts models with a suite of climate prediction
and projections models.

As seasonal forecasts improve in future, more user communities
will use the approaches and methods developed in
ENSEMBLES to utilise the forecasts. Looking forward: the
emerging discipline of initial-condition decadal ensemble
prediction will also be able to utilise the techniques developed
here for seasonal-scale forecasts, and the seasonal impacts
communities will be able to map future potential risks over the
forthcoming decade. Finally, a number of the impacts models
refined through the ENSEMBLES project are now ready for
limited-release operational use.
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10.1 Research aims

The links between climate and socio-economic systems are
numerous and extremely complex. Trying to summarise all the
multifaceted aspects, a two-way relationship can be identified:
anthropogenic activities affect climate dynamics through
greenhouse gas emissions and increased CO2 concentration;
while climate change affects social and economic dynamics
through a set of impacts (which are generally adverse, but
sometimes also positive) on human activities, and thus on
human welfare. This nexus is not static, but concerns two
systems in constant evolution and constant interaction.

The aim of Research Theme 7 (RT7) is to shed some light on
these mechanisms. More specifically it aims:
• to produce, analyse critically, and provide to climatologists
within the ENSEMBLES project a set of emission scenarios
consistent with possible future socio-economic evolutions;

• to describe and quantify the major impacts that
anthropogenic climate change can exert on social and
economic systems. Due to its importance, particular
emphasis is placed on health aspects; however, a more
general indication of the climate change vulnerability of
different world regions is also provided;

• finally, to assess the feedback (expressed as percentage
change in emissions) that the climate-impacted economic
system generates on the climate system.

10.2 Critical assessment of the IPCC
scenarios

The emissions scenarios of the Intergovernmental Panel on
Climate Change (IPCC) are commonly used for research into
climate change, estimates of the impacts of climate change, and
as a background for analysing greenhouse gas emission
reduction policies. The SRES scenarios (Nakicenovic and
Swart, 2000), the latest set of IPCC scenarios, were also used as
the basis of the scenarios of the Millennium Ecosystem
Assessment (2005) and national scenarios, e.g., in the UK
(UKCIP, 2001).

There are four base scenarios: A1, A2, B1 and B2. The A
scenarios place more emphasis on economic growth, the B
scenarios on environmental protection; the 1 scenarios assume
more globalisation, the 2 scenarios more regionalisation. The
A1 scenario has three variants: A1B, A1FI andA1T.

10.2.1 IPCC scenarios, main assumptions and
criticalities

The SRES scenarios have been criticised (Castles and
Henderson, 2003a, 2003b; Castles, 2004; Henderson, 2005)
with respect to many aspects: accounting methods, the absence
of validation of the models used to generate the scenarios, and
the lack of updates when new information was available.

One of the most problematic issues, at least for the social
sciences, was the use of market exchange rates (MER) rather
than the more appropriate purchasing power exchange rates
(PPP) to represent homogeneously the wealth of different
regions and its evolution. Basically, if measured in PPP, the gap
between developed and developing countries is smaller, and
thus the rate of GDPconvergence between rich and poor, which
according to modern growth theory is directly proportional to
this gap, is also lower.As a consequence, the use of MER tends
to overestimate emission growth from the developing countries
and potentially the climate change problem.

However three considerations counterbalance this potential bias.
• Firstly, it is particularly relevant if GDPs converge
effectively.While this is an axiom of modern growth theory
and, as such, is embedded in IPCC SRES, it is somewhat
controversial in the light of ‘real data observation’. In
addition, that theoretical result is superseded by new growth
theory based on the idea that technological progress, one of
the main drivers of growth, is endogenous and not
exogenous.

• Secondly, the IPCC SRES also assume absolute
convergence in energy intensity, which is not supported by
observation; with respect to this, they are thus more
optimistic in terms of emissions, compensating the upward
bias of emissions seen when assuming GDP convergence.

• Thirdly, the implications of these biases would be more
pronounced in regional emissions of greenhouse gases and
aerosols than in global emissions, and will thus be less
pronounced in terms of greenhouse gas concentrations, and
even less so in terms of the global mean temperature and
sea level.

In conclusion: the IPCC SRES emissions scenarios are far from
perfect. However, they constitute the standard reference, and
their quality is no worse, and often better, than alternative
emissions scenarios. Moreover, much of the critique is directed
at the demographic and economic details of the scenarios. This
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may have led to a small upward bias in emissions projection.
The range of future greenhouse gas emissions is undisputed,
however. It is therefore appropriate that the ENSEMBLES
GCMs run the SRES scenarios.

10.2.2 An alternative proposal

Even though using the IPCC SRES can be justified, some
attempts can be made to produce a baseline emission scenario
which tries to address at least the two main criticisms raised
against their economic component: the calibration at MER and
a ‘growth engine’ based on exogenous technological change.

A new baseline emission scenario was developed in
ENSEMBLES, called E1 (Figure 10.1); this is calibrated with
purchasing power exchange rates and uses a ‘new growth’
model to originate dynamics, i.e., it endogenises technical
progress. Moreover, it uses a population model to project
population dynamics based on more recent information. In this
sense, it is superior to the SRES scenarios. The E1 scenario was
developed using the IMAGE 2.4 integrated assessment model,
which simulates in detail the energy system, land use and carbon
cycle (see Section 10.4 for more information).

As can be seen (Figure 10.1), in terms of emissions, the E1
scenario is closest to the B2 scenario until 2020 when it diverges
from the SRES envelope, falling continuously until the end of
the century when it is down to 1 gigatonne of CO2 emissions in
2100.

10.3 ‘Interfacing’ climate change with the
socio-economic dimension

Due to its spatial and time scale and the still pervasive role of
uncertainty, assessing the socio-economic consequences of
climate change is extremely challenging. In particular, it is
evident that an economic evaluation cannot be performed
independently upon knowledge coming from other domains.
It comes into play only after climatic changes have been
translated into physical consequences (impacts), which, in
their turn, are able to induce a change in human activities.
Modelling these interdependences therefore requires an
integrated approach (IA), where information coming from
different disciplines is merged to provide a comprehensive
and internally consistent picture of the problem to be
analysed. To treat this complexity, IA models have been
developed.

10.3.1 Linking climate change and economics

Notwithstanding modelling differences, basically two
approaches are used to provide economic assessments of
climate change.

With ‘direct costing’, the economic consequences of climate
change impacts for major world regional economic systems
(but also at a more local level) are defined for the purpose of
‘pricing’ a quantity change – e.g., land loss to sea level rise
multiplied by the market value of that land – and then
compared to regional GDP. Thereby, reduced form climate
change damage functions can be built, linking temperature
increase to GDP loss through impacts.

The ‘indirect or higher-order costing’ method explicitly
models the social and economic reactions triggered within
economic systems by climate impacts. This approach depicts
the world economy as a system of markets interacting through
exchanges of inputs, goods and services responding to
changes in relative prices induced by climate shocks. In doing
so, the direct cost dimension of climate change merely
constitutes the starting point of the investigation. Its final
outcome is the welfare implications of climate change, i.e.,
the situation materialising once the economic system has had
the opportunity to adjust, reallocating its scarce resources
more efficiently. In other words, market-driven or
autonomous socio-economic adaptation is explicitly
described.

The socio-economic assessment provided by RT7 follows this
second approach. It uses ICES (Intertemporal Computable
Equilibrium System), which is a recursive dynamic general
equilibrium model. Its general equilibrium structure, in which
all markets are interlinked, is tailored to capture and highlight
the production and consumption substitution processes in a
socio-economic system as a response to a set of climate
shocks. These are summarised in Table 10.1. They have been
calculated for a climate change scenario of +1.2°C in 2050
with respect to 2000, consistent with the A2 IPCC SRES.
They have been obtained by extrapolation and meta-analysis
of the existing literature, inputting to reduced-form modules
linking temperature change and physical impacts.
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Figure 10.1: Global carbon dioxide emissions (in gigatonnes of carbon
per year) according to the E1 scenario and the six SRES marker
scenarios.
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10.3.2 The specific link between climate change and
human health

Among the many impacts of climate change, those on health
are particularly important for their immediate and obvious
relevance to human well-being, but also because of their
implications for health expenditure and for the productivity

of the labour force. For these reasons, dedicated research
has been devoted to the investigation of this topic within
RT7.

Climate change can affect human health through a wide
range of mechanisms and for a range of diseases or health
outcomes (deaths, injuries) (see Figure 10.2).

Table 10.1: Climate change impacts: inputs for the CGE ICES model.

Source: Our calculations from environmental impacts interface modules.

Figure 10.2: The pathways through which climate change can affect human health (McMichael et al., 2003).
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Figure 10.3: Climate change impact on macro-regional GDP. USA, United States of America; EU, Western Europe; EEFSU, Eastern Europe and
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Figure 10.4: Climate change feedback on main GHG emissions as mediated by socio-economic impacts.
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Climate variability, as characterised by extreme weather events
and interannual variability, is known to affect certain infectious
diseases. The impacts of long-term shifts in climate conditions
may lead to shifts in the distribution of infectious diseases and
areas suitable for food production. The impacts on health will
outweigh the benefits, and populations in low-income countries
are likely to be worst affected.

10.3.3 Methods for estimating the effects of climate
change on human health

Methods for estimating the health effects of climate change are
at an early stage of development. Inappropriate assumptions
have often been included in integrated assessment models with
respect to health outcomes and there is a need to improve the
relevant health impact models. Future disease burdens are
sensitive to the underlying assumptions about population
growth and ageing, and future health status.

Global climate change will increase outdoor and indoor heat
loads, and may impair health and productivity for millions of
working people. Within RT7 a model has been developed that
applies physiological evidence about effects of heat, climate
guidelines for safe work environments, climate modelling, and
global distributions of working populations to estimate the
impact of climate scenarios on future labour productivity.
Empricial-statistical models were developed to estimate the
direct impact of daily temperature on respiratory and
cardiovascular mortality (the direct effects of heat and cold)
and on diarrhoeal disease mortality, based on observational
studies of exposure-response functions.

10.4 Estimating climate change feedbacks

10.4.1 An integrated economic assessment of
climate change impacts

The economic implications of climate change impacts reported
by Table 10.1 are summarised in Figure 10.3. For the world as
a whole, the impacts jointly considered can impose costs of
around 0.2% of GDP in 2050. This global figure conceals
important regional differences.While the developed regions and
China and India gain slightly, developing regions can lose
considerably more, up to 1.2% in countries that are net energy
exporters.

In terms of GHG emissions (Figure 10.4), effects can be quite
significant regionally, but almost negligible at the global level.
Indeed, regional emission changes with opposite signs tend to
cancel each other out. Interestingly, there is no direct
relationship between GDP changes and emissions: for instance
all developed countries increase their GDP, but their CO2
emissions decline.Albeit with higher production, emissions are
driven down by a decreased household energy demand for
heating purposes. Conversely, the ‘Rest of the world’, i.e.,
developing countries, whose GDP declines, experience an
increase in CO2 emissions due to an increase in coal and
electricity demand for cooling purposes. World N2O and CH4
emissions increase slightly (with a peak of 1.5% for N2O). This
is linked to agricultural production, which at a global level

increases, fostered by increased agricultural productivity
induced by the CO2 fertilisation effect in mid- to high-latitude
regions.

10.4.2 Estimating climate change impacts on health

Climate change is very likely to decrease labour productivity in
many regions, even when changes in the labour force are taken
into account. Under the simple assumption of no specific
adaptation, by the 2080s, the greatest absolute losses of
population-based labour work capacity are seen under the A2
scenario in South East Asia, Andean and Central America, and
the Caribbean (Figure 10.5). Increased occupational heat
exposure due to climate change may significantly impact on
labour productivity and costs unless preventive measures are
implemented (Kjellstrom et al., 2009).

Climate change will have important effects on temperature-
related mortality. Climate change is estimated to increase the
temperature-attributable proportion of diarrhoeal disease, but
this is in the context of an overall decline in diarrhoeal disease
mortality. Climate change will increase heat-related mortality
and decrease cold-related mortality. The estimates of changes in
attributable cardiovascular mortality are large, due to population
ageing and the large burden of cardiovascular disease projected
in low- and middle-income countries.

At the global level, low rainfall is a determinant of diarrhoeal
disease. That is, the incidence of child diarrhoeal disease is
greater in arid and semi-arid areas than in other areas, even after
socio-economic factors have been taken into account. The
incidence of diarrhoea increased by 4% (95% confidence
interval, CI: 1–7%, p = 0.02) for each 10 mm/month decline in
rainfall (Lloyd et al., 2007).

10.4.3 Climate change, health impacts, and the role
of adaptive capacity

Although the interactions involved can be very numerous,
complex and subtle (see, e.g., Casman and Dowlatabadi, 2002),
climate determines the potential of many infectious diseases to
flourish. On the other hand, health care influences the actual
incidence of diseases. One would therefore expect that, in a
scenario of economic growth, infectious diseases would fall as
health care improves (Medlin et al., 2006). Likewise, in a
scenario of global warming, one would expect to see infectious
diseases spread into new regions and perhaps intensify
(McMichael et al., 2001). It is thus extremely important and
scientifically challenging to assess the impacts on mortality in a
scenario with both climate change and economic development.

This assessment has been performed for sub-Saharan Africa.
Scenarios for three determinants of development – per capita
income, literacy, and absolute poverty – and for climate change
have been used to project the future incidence of malaria,
assuming that it changes in proportion to infant mortality. It is
shown that deaths from malaria will first increase, because of
population growth and climate change, but will then fall,
because of development. This pattern is robust to the choice of
scenario, parameters, and starting conditions; and also holds for



diarrhoea, schistosomiasis and dengue fever. However, the
timing and level of the mortality peak is very sensitive to
assumptions (Ebi, 2007). In this model climate change is
important in the medium term, but is dominated in the long term
by development.

10.5 Conclusions and further steps

The ENSEMBLES research has confirmed some important
findings already highlighted by 20 years of literature on
impacts: anthropogenic activity is relevant in the determination
of climate change and climate change can exert relevant impacts
on humanwelfare. These impacts can be huge in their ‘physical’
materialisation (see, for instance, the negative effect on labour
productivity), but market-driven adaptation can smooth
considerably the final impact on the economic system.
However, the apparently low world GDP loss found by the
present study should not be a cause of complacency, for the
following reasons.

In the light of the still limited set of climatic impacts considered,
climate change raises important distributional and equity issues.
Higher negative impacts are felt in developing regions, which
are poorer and are already facing severe challenges for their
development.

Comparing macro-regional losses with the world figure, it is
very likely that larger losses can be found simply by
increasing the detail of the investigation. This stresses the
need to carefully tailor the scope of any climate change
impact assessment, as conclusions are scale-dependent.

Considering that the GDP impacts shown are calculated only
on a subset of potential adverse effects of climate change
(for instance, the possible consequences of increased
intensity and frequency of extreme weather events and of
biodiversity losses are not included); that the climate
scenario is on the low end of the A2 range; that
irreversibilities or abrupt climate and catastrophic changes
to which adaptation can be only limited are neglected; that
the current assessment assumes costless and instantaneous
market-driven adjustments; and finally that the world is
currently moving on an emissions trajectory leading to a
higher temperature increase than that consistent with the A2
scenario, what is proposed here, which is far from negligible
anyway, can be taken only as the lowest possible bound for
climate change costs. The main implication is that
notwithstanding its impact-smoothing potential, market-
driven adaptation cannot be the solution to the climate
change problem: its distributional and scale consequences
need to be addressed with policy-driven mitigation and
adaptation strategies.
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Figure 10.5: Changes in labour productivity (% days lost due to occupational heat exposures) by region in the 2080s, under the A2 climate
scenario. Top panel: absolute % days lost to due to heat stress, assuming no adaptation. Lower panel: change in % days lost due to changes in
both climate and labour profiles, assuming no adaptation, compared to current baseline (1961–1990 climate and 2000 labour profile).
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Interestingly, the feedback of climate change impacts on
emission paths themselves is very limited. Indeed even
pronounced regional differences tend to compensate for each
other, leaving global emission trends almost unchanged.

This work is preliminary and exploratory. Future work could be
to extend the set of climate change impacts considered, and to
check the robustness of results with respect to different climate
change scenarios, different socio-economic scenarios, and
different modelling approaches.

10.6 Technical Appendix

Within RT7, twomodelling tools have predominantly been used
to assess climate change impacts on the economic system and
subsequently the implied feedback on emissions. These are the
FUND model (Tol, 2006) and the ICES model (Eboli et al.,
2009).

The Climate Framework for Uncertainty, Negotiation and
Distribution (FUND) is an integrated assessment model of
climate change. It links scenarios and simple models of
population, technology, economics, emissions, atmospheric

chemistry, climate, sea level, and impacts with the main purpose
of performing cost–benefit and cost-effectiveness analyses of
greenhouse gas emission reduction policies and supporting
game-theoretic investigations into international environmental
agreements. The model runs in time-steps of 1 year from 1950
to 2200, and distinguishes nine major world regions. The FUND
model is particularly well suited to studying long-term
dynamics in economic growth and can embed different
assumptions concerning endogenous technical progress.

The Intertemporal Computable Equilibrium System (ICES)
model is a recursive dynamic general equilibriummodel for the
world economy. Its general equilibrium structure, in which all
markets are interlinked by domestic and international trade of
factors of production, goods and services, is tailored to capture
and highlight the production and consumption substitution
processes triggered in a socio-economic system by different
‘perturbations’ including those generated by climate shocks.
Exploiting this feature, the model has been used within RT7 to
highlight autonomous socio-economic adaptation and feedback
effects on anthropogenic emissions. The model was calibrated
in 2001 and provides regional detail for eight world macro-
regions and seventeen production sectors. It runs from 2001 to
2050 in yearly steps.
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Introduction

This Appendix gives illustrative examples of some of the spatial
output climate descriptions from the project. These examples are
a small subset of the many existing time-slice plots produced so

far, some of which have already been published in peer-reviewed
journals. Those shown here have been chosen specifically to show
the projected evolution of European and global climate over this
century. To illustrate the climate baseline, plots of the 1961-1990
climate produced from the E-OBS data set are also shown.

Appendix 1: Examples of ENSEMBLES climate descriptions and projections

Figure A1.1: The ENSEMBLES probabilistic projections for Europe under the A1B emission scenario from the perturbed physics ‘grand en-
semble’. The maps show the 10%, 50% (median) and 90% percentiles (top, middle and bottom rows respectively) of (left) European surface tem-
perature change and (right) European percentage precipitation change, for the summer season for the twenty year period 2040–2059 relative to
the 1961–1990 baseline period. [RT1]
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Appendix 1: Examples of ENSEMBLES climate descriptions and projections

Figure A1.2: The ENSEMBLES probabilistic projections for Europe under the A1B emission scenario from the perturbed physics ‘grand
ensemble’. The maps show the 10%, 50% (median) and 90% percentiles (top, middle and bottom rows respectively) of (left) European
surface temperature change and (right) European percentage precipitation change, for the summer season for the twenty year period 2080–
2099 relative to the 1961–1990 baseline period. [RT1]



Appendix 1: Examples of ENSEMBLES climate descriptions and projections

141

Figure A1.3: The ENSEMBLES probabilistic projections for Europe under the A1B emission scenario from the perturbed physics ‘grand
ensemble’. The maps show the 10%, 50% (median) and 90% percentiles (top, middle and bottom rows respectively) of (left) European
surface temperature change and (right) European percentage precipitation change, for the winter season for the twenty year period 2080–
2099 relative to the 1961–1990 baseline period. [RT1]
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Figure A1.4: Projected surface temperature anomalies (K) for December 2010 to November 2015, relative to 1961–2001, from initialised en-
semble-mean projections of the original DePreSys single-model system of Smith et al. (2007) (top left), and the DePreSys perturbed parameter
(top right) and multi-model (bottom left) projections from ENSEMBLES, all started from November 2005. The bottom right panel shows the en-
semble mean of uninitialised multi-model climate change projections from the IPCC AR4 assessment. The ensemble means are created from 9,
12, 10 and 22 simulations respectively. [RT1]

Figure A1.5: Projected changes under the A1B scenario, multi-model ensemble mean from the stream 1 GCM simulations for the twenty year
period 2040–2059 relative to the 1961–1990 mean. Left panel is annual mean surface air temperature change (K) and the right panel is precipi-
tation change in mm/day. [RT2A]
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Figure A1.6: Projected changes under the A1B scenario, multi-model ensemble mean from the stream 1 GCM simulations for the period 2070–
2099 relative to the 1961–1990 mean. Left panel is annual mean surface air temperature change (K) and the right panel is precipitation change
in mm/day. [RT2A]

Figure A1.8: Projected changes under the E1 mitigation scenario, multi-model ensemble mean of the stream 2 GCM simulations for the period
2070–2099 relative to the 1961–1990 mean. Left panel is annual mean surface air temperature change (K) and the right panel is precipitation
change in mm/day. [RT2A]

Figure A1.7: Annual mean surface air temperature change (K) projected
under the A1B scenario for the period 2070–2099 relative to the 1961–
1990 mean, using the multi-model ensemble mean of the stream 2 sim-
ulations run with GCMs that actively model carbon cycle feedbacks.
[RT2A]



144

Appendix 1: Examples of ENSEMBLES climate descriptions and projections

Figure A1.9: Projected changes in annual mean surface air temperature (K) under the A1B scenario, multi-model ensemble mean of RCM sim-
ulations for the time period 2021–2050 relative to the 1961–1990 mean. [RT2B]

Figure A1.10: Projected changes in annual precipitation (%) under the A1B scenario, multi-model ensemble mean of RCM simulations for the
time period 2021–2050 relative to the 1961–1990 mean. [RT2B]
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Figure A1.11: Projected changes in seasonal mean surface air temperature (K) under the A1B scenario, multi-model ensemble mean of RCM sim-
ulations for the time period 2021–2050 relative to 1961–1990 seasonal means. Top left panel is DJF, top right is MAM, bottom left is JJA, bot-
tom right is SON. [RT2B]

Figure A1.12: Projected changes in seasonal precipitation (%) under the A1B scenario, multi-model ensemble mean of RCM simulations for the
time period 2021–2050 relative to 1961–1990 seasonal means. Top left panel is DJF, top right is MAM, bottom left is JJA, bottom right is SON.
[RT2B]
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Figure A1.13: Projected changes in annual mean surface air temperature (K) under the A1B scenario, multi-model ensemble mean of RCM sim-
ulations for the time period 2071–2100 relative to the 1961–1990 mean. [RT2B]

Figure A1.14: Projected changes in annual precipitation (%) under the A1B scenario, multi-model ensemble mean of RCM simulations for the
time period 2071–2100 relative to the 1961–1990 mean. [RT2B]
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Figure A1.15: Projected changes in seasonal mean surface air temperature (K) under the A1B scenario, multi-model ensemble mean of RCM sim-
ulations for the time period 2071–2100 relative to 1961–1990 seasonal means. Top left panel is DJF, top right is MAM, bottom left is JJA, bot-
tom right is SON. [RT2B]

Figure A1.16: Projected changes in seasonal precipitation (%) under the A1B scenario, multi-model ensemble mean of RCM simulations for the
time period 2071–2100 relative to 1961–1990 seasonal means. Top left panel is DJF, top right is MAM, bottom left is JJA, bottom right is SON.
[RT2B]
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Figure A1.17: Projected change in the difference of maximum dry spell length (top) and differences in the number of nights with the minimum
temperature exceeding 20°C (bottom), for the Mediterranean region under the A1B scenario, multi-model ensemble mean of six RCM simula-
tions for the time period 2021–2050 relative to the 1961–1990 mean. [RT2B]
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Figure A1.18: Gridded climate observations of mean seasonal temperature (K) for the period 1961–90. Top left panel is DJF, top right is MAM,
bottom left is JJA, bottom right is SON. [RT5]

Figure A1.19: Gridded climate observations of mean seasonal rainfall (mm) for the period 1961–90. Top left panel is DJF, top right is MAM, bot-
tom left is JJA, bottom right is SON. [RT5]



Ensemble-based global-scale quantification of
terrestrial biospheric and hydrological climate
change impacts [RT6]

The LPJmL dynamic global vegetation and water balance
model (Bondeau et al., 2007; Rost et al., 2008a) has been
applied to quantify impacts of climate change upon key
terrestrial biospheric and hydrological processes by the end of
this century under a suite of climate change scenarios fromRT2
(Heyder et al., 2009). These impact simulations have been
carried out on a 1° × 1° global grid over land, driven by climate
projections from seventeen bias-corrected general circulation
models (GCMs) under forcing from the SRES A2 emission
scenario (see Randall et al., 2007). Direct physiological and
structural responses of plants to rising CO2concentration (taken
from http://www.ipcc-data.org/ddc_co2.html) are dynamically
accounted for in the simulations (Leipprand and Gerten, 2006;
Rost et al., 2008b). Only potential natural vegetation is
considered. For each output variable and grid cell, the ensemble

mean and the inter-model standard deviation of average annual
values have been calculated for the period 2069–2098.

Selected results of this analysis are plotted below as a series of
global maps showing the differences between 2069–2098 and
1961–1990 long-term annual averages of water fluxes (runoff,
plant transpiration, soil evaporation), carbon storage (in the
vegetation as well as in the soil), carbon fluxes (net primary
production, heterotrophic soil respiration), and vegetation
distribution (tree cover). The dotted areas in each map represent
regions where the projected average change exceeds the inter-
model standard deviation in 2069–2098, indicating high
agreement between the different climate change scenarios
(small standard deviation and/or strong change in ensemble
average). The broad regional patterns of change are briefly
interpreted in relation to each other. A more complete account
of results based on impact metrics that account for concurrent
changes in the individual processes shown will be given in a
forthcoming publication (Heyder et al., 2009).
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Figure A1.20. Projected changes (in mm yr−1) in average annual surface and subsurface runoff. Note the high agreement among models in terms
of runoff increase for high northern latitudes in response to increasing precipitation in all GCMs; and the relatively consistent decrease in runoff
in parts of eastern Europe, the Near East, and parts of central Asia (dotted areas).
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Figure A1.21. The projected changes (in mm yr−1) in average annual soil evaporation show a pronounced regional pattern, with decreases par-
ticularly in northern Australia, western India, the Sahel, and parts of southern Africa. These changes basically mirror the changes in vegetation
and transpiration patterns (see below).

Figure A1.22. Simulated changes (in mm yr−1) in average annual transpiration by plants. Considerable decreases occur, especially in the tropics
(mostly due to the physiological CO2 effect that reduces the aperture of plants’ stomata and thus decreases transpiration, but also due to less
precipitation especially in northern South America in some of the climate models). Increases in dry regions are mostly related to structural plant
responses to rising CO2, i.e., boosted net primary production and extended vegetation cover (see below) which apparently increases regional
transpiration more than the physiological CO2 effect decreases it. Transpiration increases in the sub-Arctic zone result from the temperature-dri-
ven northward migration of the tree line.
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Figure A1.23. Projected changes (in g C m−2) in average annual vegetation carbon. Structural forest changes (shifts from evergreen to summer-
green) and regional forest die-backs in the temperate/boreal transition zone (see below) could lead to declining carbon stocks (Fischlin et al.,
2007); in most other regions, carbon stocks are projected to increase with increasing net primary production (see below).

Figure A1.24. The simulated changes (in g C m−2 yr−1) in net primary production (NPP) demonstrate increases almost everywhere due to struc-
tural CO2 fertilisation effects. Though generally supported by observational evidence, this effect is somewhat overestimated for regions that will
be nutrient-limited in the future (Leipprand and Gerten, 2006). Decreases in NPP are simulated for the Mediterranean area and some other re-
gions, where the CO2 fertilisation effect is not able to buffer the effect of declining precipitation.
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Figure A1.25. Projected changes in tree cover (expressed as fraction per grid cell). Note in particular the significant declines in the southern bo-
real zone, which is attributable primarily to increasing heat stress (see also Schaphoff et al., 2006; Fischlin et al., 2007).

Figure A1.26. Projected changes (in g C m−2) in soil carbon, demonstrating in particular a strong decrease in the boreal zone where higher tem-
peratures lead to increased decomposition rates (see below).
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Figure A1.27. Projected changes (in g C m−2 yr−1) in soil respiration. Increases occur almost everywhere due to a combination of increased bio-
mass inputs to the soil through increased NPP and temperature-induced increases in decomposition rates, especially in the boreal zone. Since
respiration increases more strongly than NPP in the latter region, the global terrestrial biosphere turns from a net carbon sink to a net carbon
source under some climate scenarios (see Schaphoff et al., 2006).
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Introduction

The ENSEMBLES project has generated a vast (>60 terabytes)
resource base of data, which is all digital and stored on internet
archives. ThisAppendix describes these datasets – where to find
them, what they consist of, and other supporting information.
All data are made freely available for academic, educational and
commercial use, but use its must be acknowledged by inclusion
of the following statement: ‘The ENSEMBLES data used in this
work was funded by the EU FP6 Integrated Project
ENSEMBLES (Contract number 505539), whose support is
gratefully acknowledged.’ Please see the ENSEMBLES data
policy document for more information: http://ensembles-
eu.metoffice.com/docs/Ensembles_Data_Policy_261108.pdf.

The following dataset descriptions cover the daily gridded
observational datasets (RT5), the seasonal to decadal predictions
for streams 1 and 2 (RT1 and RT2A), the global climate change
simulations for streams 1 and 2 (RT2A), the regional simulations
for the ERA-40 period (RT3), the regional climate change
simulations, the quick-look analyses (RT2B), and the statistical
downscaling (RT2B).

Daily gridded observational datasets [RT5]

Gridded observational datasets of daily precipitation and
temperature have been developed on the basis of a European
network of high-quality station series.The datasets cover the period
from 1950 to 2008. They are made available on a 0.25 and 0.5
degree regular latitude–longitude grid, aswell as on a 0.22 and0.44
degree rotated pole grid. The grid is the same as the Climatic
ResearchUnitmonthly datasets for the globe.The rotated grid is the
sameas used inmanyENSEMBLESRegionalClimateModels.As
well as ‘best estimate’values, separate files are provided containing
95%confidence intervals, and surface elevation.Adescription can
be found in Haylock et al. (2008). Note that these datasets are
strictly for use in non-commercial research and non-commercial
education projects only.They are available from: http://eca.knmi.nl
/download/ensembles/ensembles.php

For more details contact Albert Klein Tank:
Albert.Klein.Tank@knmi.nl

Reference: Haylock MR, Hofstra N, Klein Tank AMG, Klok
EJ, Jones PD, NewM, 2008.AEuropean daily high-resolution
gridded dataset of surface temperature and precipitation for
1950–2006. Journal of Geophysical Research 113,
doi:10.1029/2008JD010201.

Seasonal to decadal simulations [RT1 and RT2A]

The seasonal to decadal (s2d) experiments comprise two sets
of simulations: the stream 1 and stream 2 simulations. For both
streams, coordinated forecast experiments over seasonal,
interannual and decadal timescales have been performed. Three

different approaches were pursued to represent model
uncertainties: the multi-model approach, the perturbed physical
parameter approach and the stochastic physics approach. The
data are available through the MARS server at ECMWF. For
more information on the scope of the experiments as well as
results look at: http://www.ecmwf.int/research/EU_projects/
ENSEMBLES/data/index.html.

For more details contact Francisco J. Doblas-Reyes:
Francisco.Doblas-Reyes@ecmwf.int

Centennial simulations [RT2A]

Centennial simulations using climate models from European
modelling groups (CNRM,DMI, FUB, INGV, IPSL,METO-HC,
MPIMET, NERSC) produced a set of state-of-the-art benchmark
simulations during the first phase of ENSEMBLES (stream 1).A
set of multi-model simulations were produced over the period
1860–2000 to simulate the longer-term climate anomalies
observed during the 20th century in response to a prescribed set of
anthropogenic forcings only and also with the addition of natural
forcings. Amulti-model set of coupled simulations over the 21st
century has been producedwith the three scenarios of aerosol and
GHG forcings proposed by IPCC (scenariosA2,A1B and B1) in
order to produce a projection of the future climate with a better
estimate of the uncertainties due tomodel formulation, initial state
of the climate system, and scenario choice.

Results of most of the RT2A climate scenarios are stored in the
WCRPCMIP3 archive at PCMDI, fromwhere theywere used in
the IPCC AR4 assessment (see http://www-pcmdi.llnl.gov
/ipcc/about_ipcc.php). High temporal resolution (daily and 6-
hourly) results from the RT2A multi-decadal simulations are
available on the CERAdatabase, run by the Model&Data group
at the Max-Planck Institute for Meteorology (http://www.mad.
zmaw.de/projects-at-md/ensembles/).

Improved model versions, some including new components for
the carbon cycle and aerosols, have run a new set of simulations
taking into account land-use change, as observed or computed by
a recent version of the IMAGE integrated assessment model. In
addition to an A1B scenario, a new stabilisation scenario to
450 ppmofCO2-equivalent, developed in collaborationwithRT7,
was used for the stream 2 climate change simulations.Asubset of
the stream 2 data is stored at the CERAdatabase in Hamburg.

For more details about CERA contact Heinz-Dieter Hollweg:
Heinz-Dieter.Hollweg@zmaw.de

The probabilistic projections produced by theMet Office Hadley
Cenrtre and commonly referred to as the ‘grand esemble’ are
also available online. The data are supplied in numerical form in
terms of 10,000 distribution sample points per grid box. Rockel,
northern Europe, Mediterranean and Europe regions are also
defined. The data are available from http://ensembles-
eu.metoffice.com/secure/RT6_data_230609/data_for_RT6.html.
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Regional simulations driven by ERA-40 reanalysis
data [RT3]

The ENSEMBLESRT3 simulations with the ERA-40 reanalysis
as boundary conditions are available on the RT3/RT2B archive
at http://ensemblesrt3.dmi.dk. Up to 130 fields are available from
each simulation, covering the period 1951–2002. The data are
available through an OpenDAP interface, which allows sub-
windows and sub-periods to be selected for download. Institutes,
models and contact persons are listed below:

C4I RCA Ray McGrath
CHMI ALADIN Petr S̆tepánek
CNRM ALADIN Michel Déqué
DMI HIRHAM Ole B. Christensen
ETHZ CLM Christoph Schär
GKSS CLM Burkhardt Rockel
HC HadRM Erasmo Buonomo
ICTP RegCM Filippo Giorgi
INM RCA Bartolomé Orfila
KNMI RACMO Erik van Meijgaard
METNO HIRHAM Jan Erik Haugen
MPI REMO Daniela Jacob
SMHI RCA Erik Kjellström
UCLM PROMES Manuel de Castro
OURANOS CRCM Dominique Paquin

For more details contact Ole Bøssing Christensen:
obc@dmi.dk

Regional climate change simulations and quick-
look analysis [RT2B]

RT2B formed Part 2 of the ENSEMBLESmodel engine, i.e., the
regional component (RT2Aforms Part 1, the global component).
It constructed and analysed probabilistic high-resolution regional
climate scenarios and seasonal–decadal hindcasts. An ensemble
of regional climate change scenarios using as many GCM-RCM
combinations as possible was constructed and is described in
Table A2.1. These simulations are available on the RT3/RT2B
archive at http://ensemblesrt3.dmi.dk

Quick-look analysis [RT2B]

A quick-look analysis has been set up in order to provide very
fast information on the RCM scenarios results. For 2 m
temperature, precipitation and evaporation, area means for the
eight Rockel regions are available on a monthly basis by each
modelling partner for their transient runs on 25 km horizontal
resolution. MPI-M has computed yearly means, seasonal means
and annual cycles for each decade and produced plots showing
time-series of the results of all ENSEMBLES RCMs.

Statistical downscaling [RT2B]

Statistical downscaling (SDS) was conducted by ten
ENSEMBLES partners in RT2B using a range of different
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Table A2.1: ENSEMBLES GCM-RCM Matrix of RCM simulations at 25 km resolution. Those simulations and institutes marked with an asterisk (*)
are non-contractual runs. For the METO-HC GCM, there are standard (std), low and high sensitivity runs.
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methods. Most groups downscaled GCM simulations, but C4I
applied SDS to RCM outputs.

For each group (ARPA-SIM, FIC, GKSS, IAP, KNMI,
NIHWM,NMA, UEA) and downscaling method, the following
information is provided: predictands and predictors, brief
description of method and reference, source of predictors,
region(s)/predictand datasets which have been downscaled, and
a brief outline of how uncertainties are addressed and/or
probabilistic projections derived.Asummary of the information
available is shown in Table A2.2.

This table does not list themethods implemented in the ENSEM-
BLES web-based downscaling service developed by the
University ofCantabria (UC) (www.meteo.unican.es/ ensembles).
This service is intended as a useful and friendly service for end-
users with limited experience in the technical issues associated

with statistical downscaling. It allows downscaling of
ENSEMBLES seasonal–decadal hindcasts as well as climate
change simulations. It also incorporates a data access tool which
provides easy access to reanalysis data and a number of
ENSEMBLES data outputs.

Dynamically downscaled hindcast simulations undertaken by
INM in RT2B are available at:
http://www.ecmwf.int/research/EU_projects/ENSEMBLES/dat
a/index.html

Access to RT2B SDS outputs is through the Regional Scenarios
Portal, which also provides access to many other relevant
datasets and background information: http://www.cru.uea.ac.uk/
projects/ensembles/ScenariosPortal/

For more details contact Clare Goodess: c.goodess@uea.ac.uk

Table A2.2: Summary of statistical downscaling methods used in RT2B. Note that methods implemented in the ENSEMBLES web-based
downscaling service (www.meteo.unican.es/ensembles) are not listed. ACC: Anthropogenic Climate Change runs to 2100; s2d: seasonal to
decadal hindcasts.



ENSEMBLES partners

Partner name Country
1 Met Office, Hadley Centre for Climate Prediction and Research UK
2 Météo-France, Centre National de Recherches Météorologiques France
3 Centre National de la Recherche Scientifique (inc. IPSL, LMD, LSCE, LGGE) France
4 Danish Meteorological Institute Denmark
5 European Centre for Medium-Range Weather Forecasts UK
6 International Institute for Applied Systems Analysis Austria
7 Istituto Nazionale di Geofisica e Vulcanologia Italy
8 Royal Netherlands Meteorological Institute Netherlands
9 University of Bristol UK
10 MPG represented by Max-Planck-Institut für Meteorologie (comprises two Germany

institutions: MPIMET and MPIMET.MD)
11 National Observatory of Athens Greece
12 Swedish Meteorological and Hydrological Institute Sweden
13 University of East Anglia UK
14 Universität Hamburg Germany
15 CGAM, University of Reading UK
16 Agenzia Regionale per la Prevenzione e l’Ambiente dell’Emilia-Romagna, Italy

Servizio Idro Meteorologico
17 Aristotle University of Thessaloniki Greece
18 Bureau of Meteorology Research Centre Australia
19 Société Civile CERFACS France
20 Czech Hydrometeorological Institute Czech Republic
21 Center for International Climate and Environmental Research, Oslo Norway
22 CLIMPACT France
23 Consiglio Nazionale Delle Ricerche Italy
24 Charles University, Prague, Faculty of Mathematics and Physics Czech Republic
25 Department of Agronomy and Land Management, University of Florence Italy
26 Deutscher Wetterdienst (resigned in Year 4) Germany
27 Electricité de France France
28 École Normale Superieure, Paris France
29 Swiss Federal Institute of Technology Zurich Switzerland
30 Fondazione Eni Enrico Mattei Italy
31 Fundacion para la Investigacion del Clima Spain
32 Finnish Meteorological Institute Finland
33 University of Applied Sciences Stuttgart Germany
34 Freie Universität Berlin Germany
35 GKSS Forschungszentrum Geesthacht GmbH Germany
36 Ústav fyziky atmosféry AV ČR Czech Republic
37 The Abdus Salam International Centre for Theoretical Physics Italy
38 Instituto Nacional de Meteorologia Spain
39 The Trustees of Columbia University in the City of New York USA
40 University of Stuttgart Germany
41 Joint Research Centre of the European Community Italy
42 London School of Economics UK
43 London School of Hygiene and Tropical Medicine UK
44 Norwegian Meteorological Institute Norway
45 Federal Office of Meteorology and Climatology Switzerland
46 Nansen Environmental and Remote Sensing Center Norway
47 National Institute of Hydrology and Water Management Romania
48 National Meteorological Administration Romania
49 Research Centre for Agricultural and Forest Env’t, Polish Academy of Sciences Poland
50 Potsdam Institute for Climate Impact Research Germany
51 Société de Mathématiques et de Sciences Humaines France
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52 Finnish Environment Institute Finland
53 Universidad de Cantabria Spain
54 Université Catholique de Louvain Belgium
55 Universidad de Castilla La Mancha Spain
56 University of Oslo Norway
57 Lunds Universitet Sweden
58 Universität Kassel Germany
59 University of Liverpool UK
60 Chancellor Masters and Scholars of Oxford University UK
61 WINFORMATICS (Resigned in Year 1) UK
62 Université Joseph Fourier France
63 Met Éireann (Community Climate Change Consortium for Ireland) Ireland
64 Universität Bern (previously IUKB) Switzerland
65 Leibniz-Institut für Meereswissenschaften (previously IfM) Germany
66 University of Geneva (previously University of Fribourg) Switzerland
67 Planbureau voor de Leefomgeving (previously RIVM and MNP) Netherlands
68 University of Aarhus (previously DIAS) Denmark

ENSEMBLES affiliates

Institute name Country
1 University of Copenhagen Denmark
2 University of Exeter UK
3 FAO Italy
4 WHO Italy
5 University of Zurich Switzerland
6 ESSC USA
7 University of Ireland Ireland
8 NCAR USA
9 FRGCG Japan
10 University of Tokyo (CSSR) Japan
11 National Institute of Earth Sciences Japan
12 SINTEF Energy Research Norway
13 OURANOS Canada
14 CRCMD Canada
15 Climate Analysis Group Canada
16 National Academy of Sciences of Ukraine Ukraine
17 University of Newcastle UK
18 Proudman Oceanographic Laboratory UK
19 IBIMET Institute Italy
20 Institute of Atmospheric Physics (IAP) China
21 University College London UK
22 Instituto Geofísico Infante D Luiz, University of Lisbon Portugal
23 Consejería de Medio Ambiente de Andalucía Spain
24 CEH (WATCH project) UK
25 NEA (Nordic CES Project) Iceland
26 Katholieke Universiteit Leuven Belgium
27 Agrarian Technological Institute of Castilla y León (ITACyL) Spain
28 King’s College London (FREE - HydroClimate.org) UK
29 Dept. Fisica General y de la Atmosfera Ciencias Fisicas, Universidad de Spain

Salamanca
30 International Commission for the Hydrology of the Rhine Basin (CHR) Netherlands
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The ENSEMBLES project was funded by the European Commission to research climate
change and its impacts in Europe. The research was conducted between September 2004 and
December 2009 by a Consortium of 66 research institutes, mostly from Europe. The
Consortium was led by the Met Office Hadley Centre.

The three main integrated results were that ENSEMBLES:

• developed an ensemble prediction system for climate change based on state-of-the-art,
high-resolution, global and regional Earth system models developed in Europe, validated
against quality-controlled, high-resolution gridded datasets for Europe, and produced an
objective probabilistic estimate of uncertainty in future climate at seasonal to decadal,
and up to centennial time-scales;

• quantified and reduced the uncertainty in the representation of physical, chemical,
biological and human-related feedbacks in the Earth system (including water resource,
land use and carbon cycle feedbacks);

• maximised the exploitation of the results by linking the outputs of the ensemble
prediction system to a range of applications, including agriculture, health, energy, water
resources and insurance.

This report summarises the research methods developed in the project as well as the
results arising from their application.

ENSEMBLES was funded by the European Commission under the
6th Framework Programme Priority: Global Change and Ecosystems

Met Office
Hadley Centre for Climate Prediction and Research
FitzRoy Road, Exeter EX1 3PB, UK
www.ensembles-eu.org
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