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Abstract 14 

Gridded datasets derived through interpolation of station data have a number of potential 15 

inaccuracies and errors.  These errors can be introduced either by the propagation of errors in the 16 

station data into derived gridded data or by limitations in the ability of the interpolation method 17 

to estimate grid values from the underlying station network.  Recently, Haylock et al [2008] 18 

reported on the development of a new high-resolution gridded dataset of daily climate over 19 

Europe (termed E-OBS). E-OBS is based on the largest available pan-European dataset and the 20 

interpolation methods used were chosen after careful evaluation of a number of alternatives, yet 21 

the dataset will inevitably have errors and uncertainties.  In this paper we assess the E-OBS 22 

dataset with respect to: 1) homogeneity of the gridded data; 2) evaluation of inaccuracies arising 23 
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from available network density, through comparison with existing datasets that have been 24 

developed with much denser station networks; and 3) the accuracy of the estimates of 25 

interpolation uncertainty that are provided as part of E-OBS. 26 

 27 

We find many inhomogeneities in the gridded data that are primarily caused by inhomogeneities 28 

in the underlying station data.  In the comparison of existing data with E-OBS we find that while 29 

correlations overall are high, relative differences in precipitation are large, and usually biased 30 

towards lower values in E-OBS.  From the analysis of the interpolation uncertainties provided as 31 

part of E-OBS, we conclude that the interpolation standard deviation provided with the data 32 

significantly underestimates the true interpolation error when cross-validated using station data, 33 

and therefore will similarly underestimate the interpolation error in the gridded E-OBS data.  34 

While E-OBS represents a valuable new resource for climate research in Europe, users of the 35 

data need to be aware of the limitations in the dataset and use the data appropriately. 36 

 37 

1. Introduction 38 

Gridded climate data derived from meteorological station measurements underpin a wide range 39 

of applications and research in climate science, including evaluation of global and regional 40 

climate models, the construction of bias-corrected climate change scenarios and driving many 41 

applications in climate impacts assessments [Haylock et al., 2008].  Increasingly, there has been 42 

a need for gridded data at higher spatial and temporal resolutions, as the focus of climate change 43 

research has shifted from global to regional and local scales.  Recently, Haylock et al. [2008] 44 

described the development of the first high-resolution gridded dataset of daily climate over 45 

Europe (termed E-OBS), as part of the EU funded ENSEMBLES project.  The dataset, 46 

comprising daily mean, minimum and maximum temperature and precipitation, was constructed 47 
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through interpolation of the most complete collection of station data over wider Europe [Klok 48 

and Klein Tank, 2008].  The data are available on four different RCM grids (0.25 and 0.5 degree 49 

regular lat-lon and 0.22 and 0.44 degree rotated-pole) and cover the period 1950-2006.  50 

Additionally, estimates of interpolation uncertainties are included as part of the dataset [Haylock 51 

et al., 2008]. 52 

 53 

Gridded datasets derived through interpolation of station data have a number of potential 54 

inaccuracies and errors.  Errors in the underlying station data can be propagated into the gridded 55 

data; typical sources of error include incorrect station location information, individual erroneous 56 

values or non-climatic breaks (inhomogeneities) in the station time series.  A second source of 57 

uncertainty relates to the ability of the interpolation method to estimate grid values from the 58 

underlying station network.  In general, interpolation accuracy decreases as the network density 59 

decreases, is less accurate for variables with more variable spatial characteristics (e.g. 60 

precipitation) and degrades in areas of complex terrain (e.g. mountain areas).  While E-OBS is 61 

based on the largest available pan-European dataset and the interpolation methods used were 62 

chosen after careful evaluation of a number of alternatives [Hofstra et al., 2008], the dataset will 63 

inevitably have errors and uncertainties. 64 

 65 

The aim of this paper is to assess the E-OBS dataset with respect to some of the potential errors 66 

that may be present.  Users can then familiarise themselves with the strengths and weaknesses of 67 

the data and use them responsibly.  We have chosen three features of E-OBS to analyse in this 68 

paper: 1) homogeneity of the gridded data; 2) inaccuracies due to the underlying station network 69 

density, though comparison with existing datasets that have been developed with much denser 70 

station networks; and 3) the accuracy of the estimates of interpolation uncertainty that are 71 

provided as part of E-OBS.  72 
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 73 

Long-term station data are often influenced by non-climatic factors, such as changes in station 74 

location or environment, instruments and observing practices.  These so-called inhomogeneities 75 

can often lead to misinterpretations of the climate data analysed [Peterson et al., 1998].  The 76 

station data used for E-OBS are not fully homogenised.  Individual station series may have been 77 

homogenised by the original custodians of each series, but the series provided by partner 78 

organisations have been used directly, meaning potentially inhomogeneous stations may be 79 

contributing to the interpolated grids.  As station density strongly influences the interpolation 80 

[Hofstra et al., 2008], E-OBS was constructed using many potentially inhomogeneous stations, 81 

as their exclusion would degrade the station network density and hence accuracy of the 82 

interpolation.  In addition, several studies explain that, for area averages of relatively large areas, 83 

inhomogeneities balance out during interpolation [Dai et al., 1997; New, 1999; Peterson et al., 84 

1998].  However, that may not be the case for the E-OBS high-resolution grids.  Therefore, the 85 

first out of three topics tested is the homogeneity of the dataset. 86 

 87 

The second topic is a comparison with other gridded datasets that have been developed with 88 

much denser station networks.  These datasets are available, in the case of precipitation, for long 89 

periods for the UK and the Alps and for the period October 1999 – December 2000 for Europe as 90 

a whole.  For temperature, unfortunately, we have only been able to secure data for the UK.  91 

Datasets developed with denser station networks are assumed to be a better approximation of the 92 

true area-averages.  So if the E-OBS gridded dataset produces grid area-averages that are close to 93 

those calculated from the higher quality grids, the E-OBS dataset can be deemed to be a 94 

reasonable representation of the true area-average gridded values. 95 

 96 
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Because of the inevitable interpolation uncertainties, the E-OBS dataset is provided with 97 

information on the interpolation uncertainty for each grid box and each day [Haylock et al., 98 

2008].  E-OBS interpolation uncertainty is derived by combining the Bayesian standard error 99 

estimates of the monthly climatology [Hutchinson, 1995] and the interpolation standard 100 

deviation for daily anomalies [Yamamoto, 2000] (see section 5 for more detail).  Here we 101 

concentrate on the interpolation standard error estimates, and evaluate the accuracy of the 102 

estimates through cross-validation against station data.  This represents the first evaluation of the 103 

Yamamoto [2000] standard error method, which has to date only been applied to geological data.   104 

 105 

The remainder of the paper is structured as follows.  Section 2 provides a more detailed 106 

description of the E-OBS dataset, including the underlying station data and the interpolation and 107 

gridding methodology.  We then cover each of the three evaluations in turn: inhomogeneities 108 

(Section 3), comparison against regional gridded datasets based on denser station networks 109 

(Section 4) and evaluation of the interpolation standard error estimates (Section 5).  We conclude 110 

with a summary of results and a discussion of the implications of our assessment for use of the 111 

E-OBS dataset.  112 

 113 

2. The E-OBS dataset 114 

The E-OBS gridded dataset is derived through interpolation of the ECA&D (European Climate 115 

Assessment and Data) station data described in Klok and Klein Tank [2008].  The station dataset 116 

comprises a network of 2316 stations, with the highest station density in Ireland, the Netherlands 117 

and Switzerland, and lowest density in Spain, Northern Africa, the Balkans and Northern 118 

Scandinavia.  The number of stations used for the interpolation differs through time and by 119 

variable.  The full period of record used for interpolation is 1950 – 2006 , but the period 1961 – 120 
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1990 has the highest density.  At any particular time, there are more precipitation than 121 

temperature stations.  Inhomogeneities in the station time-series have been flagged, but 122 

potentially inhomogeneous stations are used for the interpolation, for reasons noted above. 123 

 124 

The E-OBS dataset is derived through a three stage process [Haylock et al., 2008].  Monthly 125 

means (totals) of temperature (precipitation) are first interpolated to a 0.1 degree latitude by 126 

longitude grid using three-dimensional (latitude, longitude, elevation) thin plate splines.  Daily 127 

anomalies, defined as the departure from the monthly mean (total) temperature (precipitation), 128 

are interpolated to the same 0.1 degree grid, and combined with the monthly mean grid.  For 129 

temperature, daily anomalies are interpolated using kriging with elevation as an external drift 130 

factor. For precipitation indicator kriging is first used, where the state (wet/dry) of precipitation 131 

is first interpolated, after which the magnitude at ‘wet’ 0.1 degree grid points is interpolated 132 

using universal kriging.  Finally, the 0.1 degree points are used to compute area-average values 133 

at the four E-OBS grid resolutions (0.25 and 0.5 degree regular latitude-longitude grid and 0.22 134 

and 0.44 degree lat-long rotated-pole grids).  In this paper, we use the 0.25 degree regular 135 

latitude-longitude grid for further evaluation, as results for the other grids are essentially the 136 

same. 137 

 138 

Standard error estimates that accompany the gridded data are derived through combination of the 139 

individual standard error estimates for monthly and daily interpolations.  Standard error for the 140 

monthly mean or total are the Bayesian standard error estimates, as available in the ANUSPLIN 141 

package used for the spline interpolation [Hutchinson, 1995; Wahba, 1983].  Error estimates for 142 

daily anomalies have been calculated using the method proposed by Yamamoto [2000] (see 143 

Section 5).  Both standard error estimates are calculated at the 0.1 degree master grid.  For 144 

temperature monthly and daily uncertainties are combined taking the square root of the sum of 145 



 7 

the squares of the two uncertainties.  For precipitation the relative uncertainty of the daily total is 146 

the square root of the sum of the squares of the relative uncertainty of the monthly total and the 147 

relative uncertainty of the daily proportion of monthly total precipitation.  Uncertainties at the 148 

0.1 degree grid have been averaged over the target grids allowing for spatial autocorrelation.  149 

Details on the interpolation methods and how we implemented them as well as on the calculation 150 

of the uncertainties are available in Haylock et al. [2008]. 151 

 152 

3. Homogeneity assessment 153 

3.1. Homogeneity testing 154 

To analyse the influence of inhomogeneities in station data on gridded time-series and to inform 155 

the user about possible inhomogeneous areas within the dataset, we apply a homogeneity test to 156 

the gridded dataset and compare results to the same test for station data.  Numerous tests could 157 

be used [e.g., Peterson et al., 1998], but for this study we use the Wijngaard method [Wijngaard 158 

et al., 2003], which is the same test that was applied to the ECA&D station data used to construct 159 

the E-OBS, where 39% of the precipitation and 25% of the temperature station series were found 160 

to be potentially homogeneous over the period 1961 – 2006 [Klok and Klein Tank, 2008]. 161 

 162 

The Wijngaard method is an absolute test, as it does not use a supposedly homogeneous 163 

reference series.  This was appropriate for the version of the ECA&D dataset before the 164 

ENSEMBLES project started, because of its sparse network [Wijngaard et al., 2003].  It 165 

comprises four homogeneity tests: the standard normal homogeneity test (SNHT) for a single 166 

break [Alexandersson, 1986], the Buishand range test [Buishand, 1981], the Pettitt test [Pettitt, 167 

1979] and the Von Neumann test [Von Neumann, 1941].  These location-specific tests have 168 
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different characteristics; for example, the SNHT test is more sensitive to inhomogeneities earlier 169 

or later in the time-series, whereas the Buishand and Pettitt tests work better for breaks near the 170 

middle of the series.  If zero or one of the tests detects a break at the 1% significance level the 171 

time-series is classified ‘useful’; if a break is detected by two tests the series is classified 172 

‘doubtful’ and if three or four tests find a break, the series is classified ‘suspect’.   173 

 174 

For precipitation the annual wet day count is used for the analysis of breaks, as this statistic 175 

generally has lower variance than total precipitation, enabling a better signal to noise ratio for 176 

significance testing.  For temperature, the annual mean diurnal temperature range (mDTR) and 177 

the annual mean of the absolute day-to-day differences of DTR (vDTR) are used for 178 

homogeneity detection. DTR is used in preference to mean, maximum or minimum temperature, 179 

as it has been shown that tests on DTR are more sensitive: breaks that are mainly radiation 180 

related have different effects on minimum and maximum temperature and are, therefore, only 181 

weakly apparent in these variables, but do appear clearly in DTR.  As the homogeneity tests are 182 

applied to both mDTR and vDTR, a temperature station is classified according to the worst 183 

outcome for the two variables. 184 

 185 

We apply the Wijngaard tests to both station and E-OBS gridded data and compare the results.  186 

We calculate the annual wet day count, mDTR and vDTR for each year if for each month no 187 

more than 20% of the data are missing.  If less than 80% of the years in the period 1950-2006 are 188 

present, the homogeneity test for that station or grid box is not performed, although these stations 189 

may have been used for the interpolation.  Wijngaard et al.  [2003] concluded that a 1 mm 190 

threshold should be applied to define a wet day because otherwise too many breaks were 191 

detected, and we accordingly adopt this threshold. 192 
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3.2. Results and discussion 193 

Figure 1 shows the stations and grid boxes that are potentially useful (green), doubtful (blue) or 194 

suspect (red), according the Wijngaard classification.  For precipitation there are more many 195 

more useful stations and grid boxes than suspect ones.  Suspect areas are mainly located in 196 

Northern Norway, Scotland, Italy, the Balkan, parts of Central Europe and in Northern Russia.  197 

For temperature most of Europe has a statistical significant inhomogeneity at some point in the 198 

gridded data, indicated by breaks in mDTR or vDTR (or both).  However, if we only look at 199 

mDTR there are major differences (see Figure-S 1 in the supplementary material), with many 200 

more potential homogeneities in coastal areas, with remaining areas of central France, UK, 201 

Netherlands, parts of Spain and major parts of Ukraine, Northern Russia, Finland, southern 202 

Sweden, Czech Republic, Baltic States and Former Yugoslavia classified as useful in that case.  203 

That we find breaks in mDTR along the coast may be explained by a reduced variability in those 204 

areas due to the influence of the sea, making it easier to detect a break in mDTR.  205 

Inhomogeneities are much more widespread in vDTR with no clear difference between coastal 206 

and non-coastal areas.   207 

 208 

Figure 1 also shows that the areas that have the most suspect stations often also have suspect 209 

grids, but sometimes even one suspect station may influence a whole area.  An example of the 210 

latter is precipitation in northern Sweden where only one station is suspect, but has an influence 211 

over many grid boxes.  Conversely, some stations have a smaller influence on the area, as, for 212 

example, in Russia where many stations are inhomogeneous, but only small areas are influenced.  213 

Many stations in this area have breaks in different years and these may be cancelled out in the 214 

gridded values.  For temperature, inhomogeneous stations are present across the whole of 215 

Europe, which is reflected in the inhomogeneities of the gridded data. 216 

 217 
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In the case of precipitation many more areas of the grids are classified as potentially useful than 218 

for temperature (78% for the wet day count versus 46% for mDTR and 28% for vDTR for the 219 

grids, and 89% versus 49% and 56% for the stations, see Table 1), which is related to the fact 220 

that the homogeneity test is less sensitive for the wet day count.  The percentage of stations that 221 

are qualified useful is higher in this study than in the study of Klok and Klein Tank [2008] (89% 222 

for the wet day count in this study vs. 39% in the Klok and Klein Tank study and 49% vs. 25% 223 

for temperature).  The reason for this is most likely the time period used; we use the additional 224 

first 11 years of the data, in which fewer stations have full data coverage.  When there are fewer 225 

stations available, also fewer breaks are detected in the data.  mDTR has a much higher 226 

percentage of useful grids than vDTR, whereas vDTR has a higher percentage of useful stations 227 

than mDTR.  This indicates that in the station breaks are more strongly manifested in the mean 228 

of the data, whereas in the grids breaks are more strongly manifested in the standard deviation.  229 

That may be due to the fact that the variability of the grid values are dependent on the station 230 

density of the network used for the interpolation and the distance to the grid centre [Hofstra et 231 

al., 2009].  A station network that does not have a constant density in time may introduce 232 

inhomogeneities. 233 

 234 

We also assessed the distribution of breaks in time and compare these between gridded and 235 

station data (Figure 2).  As expected, the SNHT detects more inhomogeneities near the beginning 236 

and end of the period than the Buishand and Pettitt tests.  SNHT also detects more breaks for any 237 

one variable than the other tests (Table 1).  For wet day count the inhomogeneity in 1965 238 

detected in the station data by the Pettitt test is also visible in the gridded data.  Breaks in the 239 

1975-1985 period in the station data are mainly reflected in the gridded data close to 1980.  For 240 

mDTR the breaks in station and gridded data do not show a specific pattern.  However, where for 241 

vDTR the largest inhomogeneities in the station data are found around 1970, the largest breaks in 242 
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the gridded data are found in the early 1990s.  The latter breaks may be due to a declining station 243 

density around this time. We investigated whether inhomogeneities could be determined on a 244 

decadal basis, by analysing each of the six decades separately, but the Wijngaard method is not 245 

sensitive enough to find any inhomogeneities in these shorter periods at the 0.01 significance 246 

level. 247 

 248 

We also divided the calculated potential breaks for all three methods of the 57 year period into 249 

six decadal groups and assess the inhomogeneities spatially (see Figures S2-S5 in supplementary 250 

material).  We can conclude, for example for precipitation, that most Italian and former 251 

Yugoslavian stations around the Adriatic Sea with a break have this break in the period 1980-252 

1990 for all three tests; these breaks are also propagated through into the gridded data.  For 253 

precipitation, for all three tests in general, the timing of the breaks in the gridded and station data 254 

compares quite well.  For temperature, the agreement in timing of breaks between the station and 255 

gridded data is smaller.  For example, for vDTR a large part of Russia and the Ukraine has the 256 

largest significant break between 1990 and 2000 for all three tests, whereas most stations in this 257 

area suggest the largest break exists between 1960 and 1980.  This indicates that there may be 258 

multiple breaks in the station time-series of which one becomes more important in the gridded 259 

data. 260 

 261 

The inhomogeneities within the gridded data are important to keep in mind during any use of the 262 

dataset.  For example, when studying trends in the data, the results within the areas that are 263 

suspect may not be meaningful.  For those who require more detail on the inhomogeneities in the 264 

gridded data, we have prepared a file that includes, for precipitation and temperature, the 265 

potential classification of homogeneity of each 0.25 degree grid box (useful, doubtful, suspect) 266 

and, for each of the four homogeneity tests, whether a statistical significant inhomogeneity has 267 
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been detected and if so the year of the largest break.  The file can be downloaded from the E-268 

OBS download site (http://eca.knmi.nl/download/ensembles/ensembles.php).  269 

 270 

4. Comparison with existing datasets 271 

4.1. Existing datasets 272 

In the second test of the dataset we compare E-OBS to existing datasets developed with much 273 

denser station networks.  Since station density is a very important factor in the interpolation and 274 

the interpolation errors are smaller in areas with a dense station network [Hofstra et al., 2008], 275 

these existing datasets are deemed close to the ‘true’ areal average, and provide a useful 276 

reference against which to judge the E-OBS dataset.  The three existing datasets used are the UK, 277 

Alps and ELDAS datasets.  ELDAS and the Alps datasets only comprise precipitation data. The 278 

UK dataset contains all four variables.  We were unable to find or not allowed access to 279 

additional datasets in other regions. 280 

4.1.1. UK 281 

The UK dataset, supplied by the UK Met Office, comprises a 5x5 km equal-area grid, covering 282 

the period 1958 – 2002 for precipitation, 1995 – 2002 for minimum and maximum temperature 283 

and 1995 – 2006 for mean temperature [Perry and Hollis, 2005].  This dataset is compiled from 284 

a station network of 4400 stations for precipitation and 540 stations for temperature using 285 

multiple regression with geographic factors as the independent variables, followed by inverse 286 

distance weighting (IDW) of the residuals.  In comparison, the ECA&D station network had 138 287 

stations within this area, of which most had 70 - 85% of the data available for all variables.  To 288 

allow comparison with the E-OBS interpolations all grid-points within each 0.25 degree grid 289 
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used for the interpolation have been averaged.  We also compare this dataset to ELDAS (see 290 

Section 4.1.3), for which a 1 degree grid is used. 291 

4.1.2. Alps 292 

The Alps dataset, comprising precipitation only, is an updated version of the climatology and 293 

daily data described by Frei and Schär [1998] and Schwarb [2001], described in more detail by 294 

Hofstra et al. [2008].  The data are available on a 0.25 by 0.1667 degree grid and cover the 295 

period 1966 – 1999.  For the period 1966 – 1970 there are no data available over Austria and 296 

after 1990 there are data quality issues with many of the Italian stations, so in our comparison, 297 

we use the period 1966-1990, except for Austria, where the period 1971 – 1990 has been used.  298 

The dataset is constructed through addition of daily anomalies to the long term climatological 299 

mean.  Anomalies were interpolated from station data using a modified version of the Shepard 300 

algorithm [an ADW technique, Frei and Schär, 1998; Shepard, 1984] and the long-term 301 

climatology was derived with a local regression approach [PRISM, Daly et al., 2002] specifically 302 

calibrated for the Alps [Schwarb et al., 2001].  The dataset is based on over 6500 station records.  303 

In comparison, the E-OBS station network had 341 stations available within this area, with 304 

majority having over 70% data presence.  To allow comparison with E-OBS on a common grid, 305 

both datasets have been averaged to a 0.25 x 0.25 degree grid.  306 

4.1.3. ELDAS 307 

The ELDAS daily precipitation dataset was developed by Rubel et al. [2004] for the 308 

Development of a European Land Data Assimilation System to predict Floods and Droughts 309 

(ELDAS) project.  It covers Central and Northern Europe at 0.2 degree latitude by longitude and 310 

covers the relatively short period of October 1999 to December 2000.  Some 21,600 stations 311 

were used for the interpolation, compared to 2000 for E-OBS over the ELDAS domain.  Station 312 

density is reasonably homogeneous, but areas such as Portugal, Belgium, Italy, the Balkan, 313 
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Czech Republic, the Baltic states and Scandinavia have a lower density than Spain, France, the 314 

Netherlands, the UK, Denmark, Germany, Poland, Switzerland and Austria.  Interpolation was 315 

done via the Precipitation Correction and Analysis method [Rubel and Hantel, 2001]; this 316 

comprises a dynamical bias correction combined with an ordinary block kriging algorithm.  To 317 

enable comparison, we averaged ELDAS and E-OBS to a common 1 degree latitude by 318 

longitude grid. 319 

4.2. Comparison 320 

We compare E-OBS to the high-quality grids using five skill scores for temperature and six for 321 

precipitation.  We calculate the skill scores for all data together to obtain overall scores, and also 322 

on a grid-point basis to explore the spatial patterns in difference between grids.  We use the mean 323 

absolute error (MAE), root mean squared error (RMSE), compound relative error (CRE) and 324 

Pearson correlation (R) to assess temperature and the precipitation amount.  The Critical Success 325 

Index (CSI) and Percent Correct (PC) are used to study precipitation state (wet or dry, where a 326 

wet day is defined as having precipitation ≥ 0.5 mm).  The skill scores are described in detail 327 

elsewhere [Hofstra et al., 2008], but we include an explanation of each score in the 328 

supplementary material.  For precipitation we also divide the MAE and RMSE by the mean 329 

precipitation for the grids in order to remove the influence of the amount of precipitation on 330 

these two skill scores in each grid. 331 

 332 

We note that the high-quality data are not true areal averages. However, given they are based on 333 

order of magnitude denser networks than E-OBS, we expect them to be subject to smaller 334 

interpolation errors. Thus we can only quantify differences between the datasets, which provide a 335 

qualitative indication of potential errors in E-OBS, but should not be interpreted as errors of the 336 

dataset. 337 
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4.3. Results and discussion 338 

Table 2 provides an overview of the results of the skill scores, calculated ‘globally’ for each grid 339 

pairing, as well as for each standard season.  At first sight, the datasets compare very well: 340 

correlations, CSIs and PCs are high (for example, the global correlation coefficient for 341 

temperature is approximately 0.99 and for precipitation 0.85-0.92), the CREs are small and 342 

RMSEs are fairly small (for example, CRE is 0.02-0.04 and 0.18-0.36 for temperature and 343 

precipitation).  However the mean differences between datasets are quite large.  RMSE is 0.7-0.9 344 

for temperature and 2.2-2.4 for precipitation, apart from the Alps where it is larger, at 5.8.  MAE 345 

shows similar, but smaller differences.  For precipitation, the relative RMSE varies between 0.73 346 

(UK) to 1.3 over the Alps.  Relative difference between E-OBS precipitation and the other 347 

datasets are smaller in winter (UK and ALPS) and autumn (ELDAS). The main reason for larger 348 

differences between the datasets in summer is that in summer precipitation is mainly convective 349 

rather than frontal.  During this season the correlation between stations is lower than in the other 350 

seasons.  Interpolation with a larger station density will then produce better areal averages than 351 

interpolation using a less dense network.  For mean and minimum temperature the datasets are 352 

closer to each other in spring, whereas they compare better in winter for maximum temperature. 353 

 354 

 355 

Figure 3 presents the results for precipitation spatially.  E-OBS compares best to the UK dataset, 356 

as does the ELDAS dataset, suggesting that over the UK E-OBS is fairly reliable. The 357 

differences are generally larger over the West of Scotland, where topography is an important 358 

contributing factor to spatial variability in rainfall.  E-OBS does not agree as well with the Alps 359 

dataset, where the topographic complexity means that the sparse E-OBS network does not result 360 

in the same gridded data as the denser Alps network; although absolute errors are large because 361 

precipitation is on average higher in the Alps, relative errors are also larger than in the UK.  362 
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Similarly, E-OBS compares poorly to ELDAS over Norway, due to the greater station density for 363 

the ELDAS dataset in this topographically complex area.  Finally, the E-OBS precipitation 364 

dataset has virtually no stations available in northern Africa, which causes the poor agreement in 365 

this area.  Figure 4 shows the spatial pattern of skill for temperature over the UK.  In general, the 366 

agreement is good for all three temperature elements.  Differences are greatest over Scotland 367 

compared to the rest of the UK.  That may be a result of the higher station density of the UK 368 

network, which may have had more station data available at higher elevations in Scotland.  369 

Differences in agreement between the grids are generally larger than differences between the 370 

four seasons. 371 

 372 

We also evaluate whether E-OBS shows a bias compared to the high density datasets, by 373 

counting the frequency of days where E-OBS is more than ± 0.1 standard deviations from the 374 

high density dataset (Figure 5).  For precipitation, E-OBS shows a negative bias at nearly all grid 375 

boxes relative to the Alps and ELDAS datasets.  Compared the ELDAS dataset, E-OBS is 376 

positively biased over parts of Norway and at scattered locations elsewhere in Europe. Over the 377 

UK, E-OBS rainfall tends to be negatively biased in areas of higher rainfall in the west, apart 378 

from Northern Ireland where there is a positive bias (and also compared to ELDAS).  For 379 

temperature there are areas with a positive (too warm) and a negative (too cold) bias.  One 380 

striking feature is that areas such as Devon/Cornwall and Southern Wales, that are too warm for 381 

minimum temperature, are often too cold for maximum temperature.  The bias for temperature is 382 

not consistent over the whole of the UK. 383 

 384 

In Figure 6 we assess the difference between E-OBS and the high density datasets across the 385 

distribution of precipitation amount and temperature.  For this we calculate for each grid deciles 386 

of temperature and precipitation (for all wet days).  We then calculate for each day and each grid 387 
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the absolute difference between the E-OBS and the other datasets and plot the median, 5th, 25th, 388 

75th and 95th percentiles of these differences in each decile (Figure 6).  While precipitation is 389 

biased towards smaller values in all deciles of the dataset, the bias is larger for more extreme 390 

precipitation.  In the comparison of the 10th decile for the Alps the error between the two datasets 391 

can be as high as 16 mm, which is the median of the error when E-OBS is compared to the Alps 392 

dataset (see median of 9-10th decile of E-OBS versus Alps comparison in Figure 6).  The reason 393 

for this relates to the much higher station density in the other datasets.  For E-OBS, interpolation 394 

typically occurs from more distant stations compared to the high density datasets; as extreme 395 

precipitation events are usually more localised, they will be over-smoothed if a sparse network is 396 

used.  For temperature, differences in error are similar for all deciles, with an average of around 397 

0.5 °C.  The errors are slightly larger in the 1st decile for minimum temperature and the 10th 398 

decile for maximum temperature, which means that there are slightly larger errors in the 399 

extremes, but overall extreme temperature events will be quite well represented [see also the 400 

discussion of extremes in Haylock et al., 2008].  401 

 402 

We can conclude that the E-OBS shows quite large differences to the existing datasets based on 403 

higher density station network.  While correlations overall, and on a grid-by-grid basis, are high, 404 

relative differences in precipitation are large, and usually biased towards an underestimation. For 405 

temperature (UK only), mean absolute differences are at least 0.5 °C.  The fact that the ELDAS 406 

precipitation dataset shows a much better spatial match to the UK dataset than E-OBS underlines 407 

the fact that E-OBS is fundamentally limited by its underlying station network.  As the E-OBS 408 

network density over the UK is above average compared to density over the rest of Europe, we 409 

can conclude that this issue is likely to be pervasive across much of the E-OBS domain.  410 

Assessment of the agreement with existing datasets for all deciles of precipitation and 411 

temperature shows that the errors are larger in the extremes than in the more average amounts of 412 
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precipitation or temperature.  There seem to be significant problems with the underestimation of 413 

precipitation extremes.  Comparability is much higher for temperature than for precipitation, due 414 

to the fact that temperature is a continuous variable as opposed to precipitation.   415 

 416 

5. Uncertainty assessment 417 

5.1. Calculation of uncertainties 418 

Brohan et al. [2006] give an overview of all sources of all known and calculable uncertainty in 419 

their HadCRUT3 gridded global monthly temperature dataset.  Three groups of uncertainties 420 

have been identified: 1) station error, 2) sampling error and 3) bias error.  Station error includes 421 

errors made during thermometer reading, possible adjustment of homogeneities, calculation of 422 

the station normal, and processing of raw data.  The sampling error is the difference between the 423 

‘true’ spatial average and the interpolated estimate.  It depends on, amongst others, the number 424 

of stations in the grid box, the distribution of those stations and on the variability of the climate 425 

in the grid box.  The gridding method used by Brohan et al. [2006] is a simple area average of 426 

the stations within a grid, which is different from the kriging method that we use, but the 427 

sampling error of our gridding method will depend on the same factors.  Two sources of bias 428 

error are summarised by Folland et al. [2001]: urbanization effects [Jones et al., 1990] and 429 

thermometer exposure changes [Parker, 1994].  For precipitation a similar list of sources of 430 

uncertainty can be made.  Here we focus on sampling error as it is expected to be the largest 431 

contributor to overall error.  The objective here is to evaluate the accuracy of the estimates of 432 

interpolation sampling error for daily anomalies used in E-OBS.  As explained in the 433 

introduction, these daily errors are estimated using the method proposed by Yamamoto [2000].  434 

 435 
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Yamamoto [2000] estimates the so-called ‘interpolation standard deviation’ at each grid point as 436 

the weighted average of the squared differences between station and interpolated values as 437 

follows: 438 

 439 
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where xi (i =1,n) are the locations of the stations used for the interpolation and λi are the weights 442 

used in the kriging interpolation and z are the observed values at the i stations used for the 443 

interpolation (xi) and z* is the interpolated value at the location for the interpolation (x0). 444 

 445 

Yamamoto [2000] compared his interpolation standard deviation to the kriging standard 446 

deviation and cross validation error.  The kriging standard deviation is a standard by-product of 447 

kriging and used widely as a measure of reliability of the kriging procedure.  The interpolation 448 

standard deviation has much larger correlation with cross-validation error than with the kriging 449 

standard deviation.  The reason for that is that the kriging standard deviation is not a true 450 

estimate of uncertainty [Journel and Rossi, 1989; Monteira da Rocha and Yamamoto, 2000], as 451 

it cannot properly measure local data dispersion [Yamamoto, 2000]. 452 

 453 

As we do not have the true grid values for evaluation, we adopt station cross-validation to test 454 

the accuracy of the Yamamoto [2000] interpolation standard deviation.  We estimate the daily 455 

anomaly at each station in the ECA&D dataset used to construct E-OBS, using the same 456 

interpolation approach used for E-OBS gridded data.  Interpolation standard deviation is 457 

calculated using equation [1] above and cross-validation error as the absolute difference between 458 

the interpolated station value and the observed value: 459 
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 462 

We next transform the interpolation standard deviations into 95% confidence intervals by 463 

multiplication with 1.96 (assuming a normal distribution) and addition to and subtraction from 464 

the interpolated daily values for each station.  We then count the number of times the observed 465 

station value falls within the 95% confidence interval for the interpolated value, with the 466 

expectation that if the confidence interval is an accurate estimate of interpolation uncertainty we 467 

would expect the station value to fall outside the confidence interval approximately 5% of the 468 

time. 469 

5.2. Results and discussion 470 

We first compare the cross-validation error (CVE) and interpolation standard deviation (ISD) 471 

through scatter plots.  Results are similar for all temperature variables, so we only show figures 472 

for precipitation and minimum temperature. 473 

 474 

Correlation between the CVE and ISD for both temperature and precipitation is positive (Figure 475 

7).  The relationship between CVE and ISD is stronger for precipitation (r=0.57) than minimum 476 

temperature (r=0.33), which provides confidence that the spatial distribution of ISD will reflect 477 

the spatial variability in interpolation error.  The relationship is also closer to one-to-one for 478 

precipitation, whereas for temperature, ISD tends to be too large at smaller CVE and vice versa. 479 

 480 

However, a better test of the accuracy of the ISD is the count of the percentage of station values 481 

falling outside the interpolation 95% confidence interval derived from the ISD (Figure 8).  For 482 

precipitation, the upper 95% limit is mostly exceeded between 5-10% of the time, while values 483 
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fall below the lower limit 10-25% of the time, indicating that while the upper limit is a 484 

reasonable estimate, the lower limit is poorly defined, and that precipitation is frequently 485 

significantly underestimated.  For temperature, there are roughly equal numbers of values falling 486 

above and below the 95% confidence interval, but as with precipitation, the number exceeds that 487 

expected.  Most stations have at least 10% of data falling outside the confidence interval, with 488 

many stations having more than 25% of values outside the interval.  There is also a clear north-489 

south gradient in the percentage of the precipitation values falling outside the confidence limits, 490 

with the CI underestimation being much larger in the north.  The main reason for this is the fact 491 

that there are fewer rain days in the south of Europe, compared to the north.  The error is smaller 492 

when no or little precipitation is observed, compared to a situation when a lot of precipitation is 493 

observed. 494 

 495 

From this analysis, we can conclude that the interpolation standard deviation provided with the 496 

data is a strong underestimation of the actual interpolation error and should be used with care.  497 

Moreover, it has to be taken into account, that the confidence intervals available with the gridded 498 

data only include interpolation sampling error and no station and bias errors. 499 

 500 

6. Summary and Conclusions 501 

We have analysed the new E-OBS European high-resolution gridded dataset of daily minimum, 502 

maximum and mean temperature and precipitation in three ways.  First, we assessed the 503 

homogeneity of the gridded data and related this to the homogeneity of the station data.  504 

Secondly, we compared the dataset to existing gridded datasets developed with denser station 505 

networks.  And finally, we evaluated the accuracy of the interpolation standard deviation, a 506 

measure of interpolation error that is provided with the dataset.  While the three issues we assess 507 
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do not give a complete overview of the reliability of the dataset, they do provide important 508 

additional information for users of the dataset. 509 

 510 

The results of the Wijngaard [2003] homogeneity tests show that there are many potential 511 

inhomogeneities present in the gridded dataset.  There are more statistically significant breaks 512 

present in temperature than precipitation data, and within the temperature data, there are more 513 

breaks for vDTR than mDTR variables.  Inhomogeneities in the gridded data are often related to 514 

inhomogeneities in the stations contributing to the value of the grid.  However, this relation is not 515 

the same for all areas.  Sometimes an area is inhomogeneous even if there is only one 516 

inhomogeneous station in the area (e.g. for precipitation in northern Sweden) and in other 517 

occasions many stations are inhomogeneous, but the area is not effected (e.g. for temperature in 518 

south-eastern France).  The year of the break of inhomogeneous grids generally corresponds to 519 

the year of the break of stations in the surrounding area, although the correspondence is better for 520 

precipitation than for temperature.  We provide a data file that contains, for temperature and 521 

precipitation, information on the grid boxes where the data are potentially inhomogeneous.  This 522 

information will be critical when, for example, performing analyses of trends in extremes using 523 

E-OBS.  For a future update of the E-OBS dataset we recommend that the issue of 524 

inhomogeneities is studied thoroughly.  A balance will have to be found between the loss of 525 

station data and the introduction of inhomogeneities and homogenisation of the station data 526 

should be considered. 527 

 528 

When compared to existing high-resolution regional gridded data for the UK, ALPS and Europe 529 

(ELDAS) that are based on much denser station networks, E-OBS shows an excellent 530 

correlation.  However, mean absolute errors are significant, in the order 0.5 °C for temperature 531 

and greater than 100% for precipitation.  For both variables and all skill scores the datasets 532 
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compare worse in areas with more relief.  For precipitation agreement is in general better in 533 

winter, whereas for temperature agreement is mainly best in spring.  In the case of precipitation, 534 

E-OBS also shows a negative bias, indicating that E-OBS tends to be over-smoothed relative to 535 

the high-density datasets.  For temperature, E-OBS shows a small positive bias over quite large 536 

areas, but some scattered areas have a stronger negative bias.  Moreover, the E-OBS dataset 537 

compares better to the mean of the variables of the existing datasets than to the extremes, 538 

although differences are much larger for precipitation than for temperature.  Consequently, the 539 

dataset should be used with caution in comparison to RCM outputs, especially with respect to 540 

evaluation of RCM precipitation extremes. 541 

 542 

The uncertainty estimates available with the data only represent sampling, or interpolation, 543 

errors.  These are calculated by combining errors from both parts of the interpolation process, 544 

namely interpolation of the monthly mean (temperature) or totals (precipitation) using thin plate 545 

smoothing splines and the interpolation of daily anomalies using versions of kriging (see Section 546 

2).  We evaluated the daily interpolation error estimates, estimated using Yamamoto’s [2000] 547 

interpolation standard deviation approach.  A comparison of these errors with cross-validation 548 

errors shows that for most of Europe cross-validation error is positively correlated with 549 

interpolation standard deviation.  However, the frequency with which the 95% interpolation 550 

confidence interval is exceeded is much larger than expected, indicating that the interpolation 551 

standard deviation significantly underestimates the actual interpolation error.  The 95% 552 

confidence limits are on average exceeded 25% and sometimes even over 50% of the time.  In a 553 

future update of the data we recommend that ensemble stochastic simulations, i.e. a set of 554 

interpolated realisations should be considered for the estimation of uncertainties.  These have 555 

also been mentioned in Haylock et al. [2008] but have not been implemented due to time 556 
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constraints.  Bellerby and Sun [2005] and Teo and Grimes [2007] suggest short-cuts that should 557 

reduce the computing time required. 558 

 559 

The E-OBS dataset is the first publically available dataset that covers the whole of Europe at a 560 

very high spatial resolution for daily data.  However, as this study reveals, there are some 561 

potentially important limitations to the data.  Inhomogeneities are present within the data, the 562 

data show quite large absolute and relative differences and biases to existing datasets that have 563 

been developed with very dense station networks, and the standard errors delivered with the data 564 

appear to significantly underestimate the true interpolation error.  This will have to be taken into 565 

account when the data are used, e.g. for the evaluation of RCM outputs.  Trends analysis may 566 

also be affected by potential inhomogeneities in the data.  In addition, the underestimation of 567 

extremes within the data may, for instance, influence future predictions using RCM outputs 568 

regarding flooding.  Moreover, when using the standard errors that have been supplied with the 569 

data it has to be taken into account that these errors only include interpolation sampling errors 570 

and that they are an underestimation of the true error. 571 

 572 

The E-OBS data will often be the only available dataset for studies of e.g. the comparison of 573 

RCM outputs for the whole of Europe.  With the collation of more data and hence better 574 

availability, reconsideration of how to deal with inhomogeneities in station data and how to 575 

improve the uncertainty estimates the data will improve in the future.  However, users of the data 576 

should take notice of the weaknesses mentioned in this paper and use the data appropriately. 577 

 578 
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Table 1. The fraction of stations or grids that are useful, doubtful or suspect and the 653 

inhomogeneous fraction for each statistical test 654 

 655 

 656 

 657 

 658 

  Overall Fraction Fraction with Breaks 

  

# stations 

or grids Useful Doubtful Suspect 

SNHT Buishand Pettitt 

Von 

Neumann 

Stations 836 0.892 0.044 0.064 0.123 0.072 0.114 0.087 Wet day 

fraction Grids 22176 0.781 0.078 0.141 0.219 0.164 0.216 0.166 

Stations 472 0.492 0.114 0.394 0.477 0.422 0.432 0.468 
mDTR 

Grids 21970 0.464 0.099 0.437 0.515 0.470 0.460 0.485 

Stations 472 0.555 0.097 0.348 0.434 0.388 0.400 0.381 
vDTR 

Grids 21970 0.275 0.113 0.612 0.738 0.630 0.580 0.697 
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Table 2.  Skill scores for the comparison of the E-OBS gridded dataset with the UK, Alps, and 659 

ELDAS gridded datasets for the four variables minimum, maximum and mean temperature and 660 

precipitation. Skill scores have been calculated for each grid point and are then averaged. 661 

Annual          

  R MAE 
MAE/ 

mean 
RMSE  

RMSE/ 

mean 
CRE  CSI PC 

UK Minimum temperature 0,984 0,687 n/a 0,895 n/a 0,041 n/a n/a 

 Maximum temperature 0,991 0,597 n/a 0,780 n/a 0,024 n/a n/a 

 Mean temperature 0,991 0,517 n/a 0,695 n/a 0,023 n/a n/a 

 Precipitation 0,916 1,081 0,355 2,170 0,729 0,182 0,836 0,909 

Alps Precipitation 0,880 2,253 0,514 5,766 1,325 0,357 0,769 0,897 

Eldas Precipitation 0,846 1,159 0,457 2,419 1,009 0,316 0,744 0,874 

          

Winter          

  R MAE 
MAE/ 

mean 
RMSE 

RMSE/ 

mean 
CRE CSI PC 

UK Minimum temperature 0,971 0,700 n/a 0,918 n/a 0,082 n/a n/a 

 Maximum temperature 0,977 0,507 n/a 0,680 n/a 0,056 n/a n/a 

 Mean temperature 0,974 0,533 n/a 0,718 n/a 0,068 n/a n/a 

 Precipitation 0,925 1,187 0,331 2,227 0,627 0,176 0,856 0,914 

Alps Precipitation 0,894 2,013 0,505 5,031 1,274 0,346 0,784 0,906 

Eldas Precipitation 0,848 1,256 0,458 2,360 0,926 0,373 0,759 0,869 

          

Spring          

  R MAE 
MAE/ 

mean 
RMSE 

RMSE/ 

mean 
CRE CSI PC 

UK Minimum temperature 0,973 0,663 n/a 0,860 n/a 0,069 n/a n/a 

 Maximum temperature 0,981 0,640 n/a 0,822 n/a 0,051 n/a n/a 
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 Mean temperature 0,984 0,491 n/a 0,631 n/a 0,039 n/a n/a 

 Precipitation 0,916 0,893 0,359 1,803 0,730 0,181 0,828 0,908 

Alps Precipitation 0,881 2,237 0,514 5,345 1,231 0,365 0,775 0,888 

Eldas Precipitation 0,853 1,039 0,465 2,103 0,992 0,338 0,742 0,875 

          

Summer          

  R MAE 
MAE/ 

mean 
RMSE 

RMSE/ 

mean 
CRE CSI PC 

UK Minimum temperature 0,955 0,668 n/a 0,866 n/a 0,116 n/a n/a 

 Maximum temperature 0,970 0,709 n/a 0,896 n/a 0,087 n/a n/a 

 Mean temperature 0,965 0,520 n/a 0,700 n/a 0,082 n/a n/a 

 Precipitation 0,898 1,004 0,402 2,136 0,874 0,207 0,807 0,903 

Alps Precipitation 0,852 2,531 0,546 6,088 1,385 0,392 0,732 0,878 

Eldas Precipitation 0,826 1,026 0,514 2,003 1,334 0,577 0,690 0,870 

          

Autumn          

  R MAE 
MAE/ 

mean 
RMSE 

RMSE/ 

mean 
CRE CSI PC 

UK Minimum temperature 0,976 0,720 n/a 0,928 n/a 0,067 n/a n/a 

 Maximum temperature 0,987 0,518 n/a 0,667 n/a 0,035 n/a n/a 

 Mean temperature 0,983 0,526 n/a 0,709 n/a 0,042 n/a n/a 

 Precipitation 0,921 1,243 0,341 2,408 0,681 0,173 0,849 0,912 

Alps Precipitation 0,899 2,228 0,495 6,196 1,368 0,326 0,783 0,914 

Eldas Precipitation 0,863 1,226 0,431 2,511 0,911 0,306 0,765 0,879 
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 662 

Figure 1.  Overall homogeneity, according to the Wijngard test, of the station network (top) and 663 

the gridded data (bottom) for precipitation (left) and temperature (right).  For temperature mDTR 664 

and vDTR are combined, with the most negative outcome for the two variables used. 665 

 666 

Figure 2. The fraction of stations and grid points with a statistically significant (0.01) 667 

inhomogeneity in each year of the dataset. Inhomogeneities are calculated for the full 1950-2006 668 

period. 669 

 670 

Figure 3. A spatial overview of the skill scores R (-), MAE (mm), RMSE (mm), CRE (-) and 671 

CSI for precipitation for the comparison of the E-OBS dataset with the datasets of the UK (top 672 

row), Alps (2nd row) and ELDAS (3rd row) and the UK versus ELDAS (bottom row). MAE / 673 

mean precipitation (-) and RMSE / mean precipitation (-) are added to remove the influence of 674 

the average amount of precipitation in a grid cell on the skill score. 675 

 676 

Figure 4.  As  677 

Figure 3, but for the skill scores R (-), MAE (°C), RMSE (°C) and CRE (-) for minimum (top), 678 

maximum (middle) and mean (bottom) temperature for the comparison with the UK dataset. 679 

 680 

Figure 5. Spatial pattern of bias in the E-OBS dataset compared to higher quality data over the 681 

Alps, ELDAS domain and UK, expressed: the percentage of days that E-OBS data are more than 682 

0.1 standard deviations below the higher quality data, subtracted from the percentage of days the 683 

E-OBS data are more than 0.1 standard deviation above the higher quality data.  Thus, a positive 684 

value indicates that E-OBS data tend to be biased greater than the higher quality data, and vice 685 

versa.   Precipitation is shown left, with UK top, Alps in the middle and ELDAS at the bottom. 686 
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Temperature (UK only) is shown right, with minimum temperature at the top, maximum 687 

temperature in the middle and mean temperature at the bottom. 688 

 689 

Figure 6. Absolute error in different deciles for each comparison with existing datasets for 690 

precipitation (left) and temperature (right). In the left figure red is for the UK, green for the Alps 691 

and blue for ELDAS, in the right figure red is for minimum temperature, green for maximum 692 

temperature and blue for mean temperature. The box of absolute error shows the 0.25th, median 693 

and 0.75th percentile, the whiskers show the 0.05th and 0.95th percentile.  Deciles are calculated 694 

for each grid separately. 695 

 696 

Figure 7. Bivariate histograms showing the joint frequency distribution of cross validation error 697 

and interpolation standard deviation for precipitation (left) and minimum temperature (right).  698 

Both figures are on a log-log scale. 699 

 700 

Figure 8. Spatial patterns of the percentage of interpolated data exceeding the lower (left) and 701 

upper (right) limits of the 95% confidence interval for precipitation (top) and minimum 702 

temperature (bottom) for all stations.  Insets display histograms of the frequency of the over- or 703 

underestimation of the stations. 704 

 705 


