
 1 

The influence of interpolation and station 

network density on the distribution and 

extreme trends of climate variables in 

gridded data 

 

Nynke Hofstra1,*, Mark New, Carol McSweeney 

School of Geography and the Environment, Oxford University Centre for the 

Environment, South Parks Road, Oxford, OX1 3QY, UK 

1Now at: Environmental Systems Analysis Group, Wageningen University, P.O.  Box 47, 

6700 AA Wageningen, The Netherlands 

*Corresponding author: nynke.hofstra@wur.nl 



 2 

Abstract 

We study the influence of station network density on the distribution and trends in 

extreme indices of area-average daily precipitation and temperature in the E-OBS high 

resolution gridded dataset of daily climate over Europe, which was produced with the 

primary purpose of Regional Climate Model evaluation.  True areal averages can only be 

determined with reasonable accuracy from a sufficiently large number of stations within a 

grid-box.  However, the station network on which E-OBS is based comprises only 2316 

stations, spread unevenly across approximately 18,000 0.22 ° grid-boxes.  Consequently, 

grid-box data in E-OBS are derived through interpolation of stations up to 500 km 

distant, with the distance of stations that contribute significantly to any grid-box value 

increasing in areas with lower station density.  Since more dispersed stations have less 

shared variance, resultant interpolated values are likely to be over-smoothed, and 

extremes even more so.  We perform an experiment over five E-OBS grid boxes for 

precipitation and temperature that have a sufficiently dense local station network to 

enable a reasonable estimate of the “true” area-average.  We then create a series of 

randomly selected station sub-networks ranging in size from four to all stations within the 

interpolation search radii.  For each sub-network realisation, we estimate the grid-box 

average applying the same interpolation methodology as used for E-OBS, and then 

evaluate the effect of network density on the distribution of daily values, as well as trends 

in extremes indices.  The results show that when fewer stations have been used for the 

interpolation, both precipitation and temperature are over-smoothed, leading to a strong 

tendency for interpolated daily values to be reduced relative to the “true” area-average.  

The smoothing is greatest for higher percentiles, and therefore has a disproportionate 
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effect on extremes and any derived extremes indices.  For many regions of the E-OBS 

dataset, the station density is sufficiently low to expect this smoothing effect to be 

significant and this should be borne in mind by any users of the E-OBS dataset. 

 

1. Introduction 

Gridded climate data are important for many reasons, including the evaluation of climate 

model outputs and detection of trends in mean climate and climate extremes (e.g., 

Haylock et al., 2008).  While remotely sensed products, reanalysis, station and gridded 

station data have all been used for these purposes, the first three have several 

disadvantages.  Satellite and, for precipitation, radar data have complete coverage, but 

can have significant spatio-temporal biases and only cover a relatively short period of 

time (Gerstner and Heinemann, 2008; New et al., 2001; Reynolds, 1988).  Reanalysis 

data, which are derived from numerical weather prediction hindcasts with assimilated 

observations, have the advantage that they are gridded, largely homogeneous and readily 

available (Hanson et al., 2007), but the data are only comparable to observations from 

stations after 1979 in the case of temperature (Simmons et al., 2004) and for 

precipitation, exhibit large errors and systematic biases and  Hanson et al.  (2007) find 

that reanalysis data underestimate precipitation and temperature extremes significantly.  

Nonetheless, reanalysis data have been used for regional climate model (RCM) 

evaluation (e.g. in Kjellström and Ruosteenoja, 2007 in an analysis of RCM performance 

in the Baltic Sea region)  The direct observations of climate which are most readily 

available are from meteorological stations, but there is a mismatch of scale between 
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‘point’ station observations and the areal average output of climate models (Chen and 

Knutson, 2008). 

 

Gridded data derived from interpolation or area-averaging of station observations are 

often used to overcome the scale mismatch between climate models and station 

observations.  In some areas the station density is so high that only stations within each 

grid box are used to estimate the grid-box area-average.  Some studies use these dense 

areas for the evaluation of RCMs (e.g., Beniston et al., 2007; Buonomo et al., 2007; 

Huntingford et al., 2003; Jones and Reid, 2001; Semmler and Jacob, 2004), while for 

other areas, RCMs have been evaluated using gridded data developed with much sparser 

station networks.  An example of this is the study by Christidis et al.  (2005), who use the 

gridded global daily temperature dataset developed by Caesar et al.  (2006) for the 

evaluation of their GCM.  Until recently, European-wide high-resolution daily gridded 

data for Europe did not exist, despite a need for such data, as explained by Santos et al.  

(2007), who were forced to use reanalysis and station data for their evaluation of 

precipitation outputs of GCMs. 

 

Haylock et al.  (2008) describe a new European high-resolution gridded dataset of daily 

surface temperature and precipitation for 1950 – 2006 that has been developed as part of 

the EU-funded ENSEMBLES project, termed the E-OBS dataset.  E-OBS has been 

developed for several purposes, including evaluation of RCMs used in the ENSEMBLES 

project and for climate impacts assessments (Hewitt and Griggs, 2004), with a particular 

emphasis on assessment of the ability of RCMs to simulated daily climate and extremes.  
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E-OBS is available on at four resolutions; 0.5 and 0.25 ° regular longitude-latitude grids, 

and 0.44 and 0.22 ° rotated-pole grids (Haylock et al., 2008). 

 

The aim of the E-OBS data is to represent the daily areal average in each grid-box, which 

is equal to the average of a sufficiently large number of stations within the grid-box.  

Since outputs of RCMs are perceived to be ‘true’ areal averages (Chen and Knutson, 

2008; Osborn and Hulme, 1997) they would then be comparable to the E-OBS area-

average estimates.  However, the station network used to develop E-OBS is variable in 

space and time (Haylock et al., 2008).  In addition, the station network is relatively 

sparse, comprising only 2316 stations over Europe.  While this is an increase of an order 

of magnitude compared to the data availability before the ENSEMBLES project started 

(Klok and Klein Tank, 2008), there are approximately 18,000 0.22° grid-boxes over the 

European land area, so only a small fraction of grid boxes contain even one station.  

These two issues (variability of the density of the station network and sparseness of the 

network) can potentially affect the resultant grid box area-average estimates, in three 

main ways. 

 

The first possible influence concerns with the variance shared between stations that 

contribute to a grid-box estimate, and which is retained in the areal average.  When fewer 

than a sufficiently large number of stations within the grid-box are used to estimate the 

average, the variance of the area-average is likely to be larger than the true variance, and 

the estimate will not be a ‘true’ areal average, but something in between a point estimate 

and an areal average. 
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The second potential effect on the areal average results from the practice of using stations 

outside a grid-box for the estimation of the areal average.  Stations further away from 

each other have a lower shared variance (e.g., Hofstra and New, 2008; Osborn and 

Hulme, 1997).  When stations outside a grid-box are used to estimate the grid-box areal 

average, this can result in an over-smoothing of the variance compared to the true grid 

box average.  Although most interpolation methods apply a higher weight to stations 

closer to the grid-box, this “smoothing” will be less marked for grid-boxes with stations 

that are nearby, but a further consequence is that the degree of variance smoothing 

changes with station density across the grid domain.   

 

The third potential effect is that over- or under-smoothing of the variance implies that 

extremes are influenced more than the mean.  This is important if the data are being used 

to evaluate the ability of RCMs to simulate extremes.  Further, if large extremes are 

reduced more than smaller extremes, the trend in these extremes may be reduced too. 

 

All three of these effects are expected to be more important for precipitation than for 

temperature, because precipitation is a discontinuous variable in space and time.  

However, for E-OBS, the station density is lower for temperature than for precipitation, 

which might mean that temperature is more affected than might be expected.  In the case 

of precipitation some studies have described methods to obtain ‘true’ areal average 

information, either as parameters of their probability distribution (McSweeney, 2007) or 

as return values (Booij, 2002; Fowler et al., 2005), which are then used for evaluation of 

GCM or RCM outputs. However, we are unaware of any studies that focus on the scaling 

issues in gridded station data themselves. 
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Haylock et al.  (2008) briefly explored some of these scale issues in a comparison of 

extremes in stations and E-OBS.  They show that the reduction factor (the proportional 

decrease in the return value, for precipitation) and the reduction anomaly (the 

proportional decrease in the anomaly for maximum temperature) decrease in all extremes 

higher than the 75th percentile for precipitation and the 90th percentile for maximum 

temperature, and that these reduction factors are variable in space.  Haylock et al.  (2008) 

conclude that the interpolation methodology smoothes the intensity of the extremes and 

that the E-OBS data should therefore be suitable for evaluation of RCMs, but they do not 

evaluate the extent to which over- or under-smoothing occurs. 

 

To improve the understanding of issues of scale within E-OBS, the objective of this study 

is to assess the extent to which the interpolation procedure used for E-OBS produces true 

areal averages.  We focus on the influence of station network density on (i) the shape of 

the distribution of gridded daily climate variables and (ii) the size and trends of extreme 

indices calculated from the gridded data.  In the sections that follow, we first describe the 

general method with which we assess the influence of station density, and then we 

describe the results for the distribution and extremes. 

 

2. Data and methods 

As we do not have true area-averages to evaluate against, we select grid boxes from E-

OBS that contain or are adjacent to a sufficiently large number of precipitation and 

temperature stations.  Since there are approximately 18,000 0.22 degree land grid-boxes 
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in E-OBS and only 2316 stations, there are only five grid boxes that have sufficient 

stations for our purposes for precipitation and temperature respectively.  Table 1 and 

Figure 1 give an overview of the location of the grid-boxes, which are different for 

precipitation and temperature, and show the stations in or nearby the grid-boxes used to 

calculate area-averages, as well as all stations within the search radius used in the 

interpolation, which is 450 km for precipitation and 500 km for temperature.   

 

We use the rotated pole grid for our evaluation, using both 0.22 and 0.44 degree grid-

boxes so we can explore any differences in smoothing at these different scales (e.g., Chen 

and Knutson, 2008). 

 

To evaluate the effect of different station network densities on the gridded estimates, we 

randomly sample from the full station network within a grid-box search radius to create 

“sub-networks” of different size, ranging from four to 250 stations (henceforth termed 

INT-4 to INT-250).  For each sub-network size, one hundred random sub-samples are 

created.  We use each sub-network to estimate the grid-box areal average using the same 

approach as that used for E-OBS (see below).  We also calculate an interpolated estimate 

based on the full station network (INT-ALL) and a simple average based on the stations 

within, or very close to, the grid-box, which serve as our estimate of the true spatial 

average (termed AVG).  As we use the grid-boxes with the highest station density, AVG 

is the closest we can get to a ‘true’ areal average. 

 

We fit the gamma and Gaussian distribution to the realisations of interpolated daily 

values so we can evaluate the influence of network density on the full distribution of 
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daily precipitation and temperature respectively.  Similarly, to evaluate the influence of 

network density and interpolation on over- or under-smoothing of extremes, we calculate 

a range of extreme indices for each realisation. 

 

In the remainder of this section we describe the station data, explain the E-OBS 

interpolation method and fitting of distributions, and finally define the extremes indices 

that we evaluate. 

 

2.1. Station data 

We make use of the same station dataset that underpins the E-OBS gridded data, which 

were collated by the Royal Netherlands Meteorological Institute (KNMI) in collaboration 

with over 50 partners from European countries, as part of the European Climate 

Assessment and Data (ECA&D) (Klok and Klein Tank, 2008).  In total, there are 2316 

stations, most of which have precipitation data, with a smaller fraction having both 

precipitation and temperature data.  For our study, we only use station data that fall 

within the interpolation search radii of the grid-boxes, and that also have less than 31% 

missing data (Figure 1).  The density of the station network is variable in space and time 

and by using stations with more than 69% data we ensure that even if only 4 stations are 

selected, there will be sufficient data available for interpolation on a large proportion of 

days and that any analysis is not overly affected by sub-sampling from a changing master 

network.  The data have been subject to an automated quality control by KNMI (Klok 

and Klein Tank, 2008) so most potentially erroneous outliers have been removed.  

However, in the process of our analysis, we discovered some problems with potential 
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duplicate stations in Ireland and Italy, where a few stations with slightly different latitude 

and longitude have the same values for most of the time.  These issues have been 

reported to KNMI and they will be addressed before the next version of E-OBS.  We use 

the full period of the dataset, 1950-2006 for our analysis, except when we assess the 

effect network density and smoothing on trends in extremes, where we use the 1961-1990 

period. 

 

2.2. Interpolation 

We employ the same interpolation procedure used to produce E-OBS (Haylock et al., 

2008), but apply it to each of the realisations of station networks of different density.  For 

any one sub-network realisation, the 15 closest stations are selected.  If there are fewer 

than 15 stations in the search radius (450 and 500 km for precipitation and temperature, 

respectively) all stations are selected.  If there a fewer than four stations available, the 

interpolation is not undertaken, and the grid value for that day is set to missing.   

 

For the E-OBS dataset, daily values are interpolated in a three-phase process (Haylock et 

al., 2008).  Monthly values are first interpolated using thin-plate splines onto a 0.1 ° grid.  

Thereafter daily anomalies are interpolated separately onto the same 0.1 ° grid using 

ordinary kriging for temperature, or for precipitation, indicator kriging (Barancourt and 

Creutin, 1992) to determine the state (wet or dry), followed by ordinary kriging for 

precipitation amount at locations whose state is wet.  The 0.1 ° monthly and daily 

anomaly fields are then combined and averaged to obtain area-average estimates for the 

E-OBS 0.25 (0.22) and 0.5 (0.44) cartesian (rotated pole) grids. 
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For this study, we only interpolate daily anomalies from the multiple sub-networks, as it 

has been shown elsewhere (Haylock et al., 2008) that any smoothing of gridded daily 

values and extremes occurs at this stage of the interpolation rather than after combination 

with monthly values.  We employ the global variograms defined for E-OBS rather than 

defining a new variogram for this test case.  Each realisation of daily anomalies is then 

combined with the existing E-OBS monthly fields and 0.22 and 0.44 ° area-averages are 

calculated, to enable distributions to be fitted and extremes indices to be computed.  

Results for the 0.25 and 0.50 ° grids are virtually identical to the 0.22 and 0.44 ° grids, so 

we only report results for the latter here.   

 

2.3. Distributions 

To quantify the influence of interpolation under different station densities on the 

distribution of our climate variables, we fit the gamma distribution to precipitation data 

and Gaussian distributions to the temperature data.  The gamma distribution is fitted 

using the Thom (1958) maximum likelihood method, after which the shape (α) and scale 

(β) parameters are used to obtain the mean (α*β) and the variance (α*β2) of the 

distribution.  Since the gamma distribution is only fitted for days with precipitation (> 0.5 

mm), we also calculate the dry day probability.  For temperature we use the method of 

moments  (Wilks, 2006) to fit the Gaussian distribution to the anomalies from the 

monthly mean (to remove the seasonal cycle of temperature), and then analyse the 

variance (for temperature, the mean is not strongly affected – not shown).  To determine 

how well the chosen distributions fit the data, we use quantile-quantile (Q-Q) plots.  For 
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precipitation, minimum temperature and maximum temperature for each grid-box we 

have plotted Q-Q plots for selected time series (not shown).  For precipitation the fitted 

gamma distribution fits the data of the stations better than the interpolated data or the 

average of the station data within the grid-boxes.  In many cases of the former the 

distribution fits the data well until at least the 99th percentile.  However, in case of the 

gridded data the fitted distribution begins to diverge from the data from the 90th 

percentile onwards, which may be due to possible smoothing of the interpolated data.  

However, the deviation from the fitted distribution is so small that we assume that the 

gamma distribution fits well until at least the 95th percentile.  For temperature the results 

for maximum temperature are generally slightly better than for minimum temperature.  In 

all cases the distribution fits the data well until at least the 95th percentile. 

 

2.4. Extreme indices and trends 

To investigate the influence of interpolation and station density on the extremes of 

precipitation and temperature and on the trends in these extremes, we calculate a subset 

of the standard extremes indices defined by the Expert Team on Climate Change 

Detection and Indices (ETCCDI)1: 

– R20mm: the annual number of days with daily precipitation larger than or equal to 20 

mm 

– RX1day: the annual maximum precipitation on one single day 

– R95p: the sum of the precipitation on all days on which precipitation is larger than the 

95th percentile 

                                                 
1 ETCCDI meets under the auspices of the joint WMO Commission for Climatology, CLIVAR, Joint-
WMO-IOC Technical Commission for Oceanography and Marine Meteorology. 



 13 

– TXx: the annual maximum of the daily maximum temperature 

– TNx: the annual maximum of the daily minimum temperature 

– SU: summer days, the annual number of days on which the daily maximum 

temperature is above 25 ºC 

– FD: frost days, the annual number of days on which the daily minimum temperature is 

below 0 ºC 

These indices are relatively easy to interpret compared to some of the other indices, and 

also test a range of generic types of indices: percentiles, annual maxima and number of 

days above or below a threshold.  All indices are determined using the FClimDex 

programme (available from: http://cccma.seos.uvic.ca/ETCCDMI/). 

 

A number of approaches for trend analysis of extremes have been used.  Linear 

regressions trends have been used by e.g.  Klein Tank and Können (2003) and Groisman 

et al.  (2005), while Alexander et al.  (2006) use the nonparametric Kendall’s tau based 

slope estimator to estimate the trends that is less sensitive to outliers.  Here we employ 

the more widely used least-squares linear regression approach.  We use the period 1961-

1990 because the station network density is highest in this period.  Using different 

periods will give different trends, but we are not interested in the trends as such, but in 

the differences in trend between the interpolations based on different network densities, 

so any single analysis period will serve to elucidate these differences.   

 

Inhomogeneous data could result in biased trends.  Many stations used for the E-OBS 

interpolation, as well as the E-OBS dataset itself, have potential inhomogeneities (Hofstra 

et al., 2008).  However, since in this study we are only interested in the influence of 
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interpolation and station density on the extremes and on trends in these extremes, any 

inhomogeneities will not affect our specific aims.  However, the values of calculated 

trends from this study should not be seen as real trends for certain areas, as they may 

have been influenced by inhomogeneities. 

 

3. Results 

3.1. Distribution 

Figure 2 shows, for precipitation, the dependence on station density of dry day 

probability, mean and variance of the gamma distribution for the five grid-boxes 

analysed.  We also show results for each individual station (not interpolated), for an 

interpolation based on all available stations, as would occur in E-OBS, and the simple 

average calculated using the stations within and adjacent to the grid box.  We note that 

the patterns for seasonal data (not shown) are the same (though with different absolute 

values) as those for annual data shown in Figure 2. 

 

A similar general pattern emerges for each test case, where the spread in parameters is 

largest for small networks, narrowing and approaching the estimated area-average as the 

number of stations available to sample from increases.  As might be expected, the spread 

of parameters at individual stations is even larger.  The spread of the interpolated 

realisations is mainly directed towards lower values than the area-average, indicating that 

the tendency is for both the mean and variance of daily precipitation to be 

underestimated, and that the dry-day probability is also underestimated.  We also show 

(using colour) the average distance of the two nearest stations used in the interpolation; 
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for any sub-network size, when the nearest stations are more dispersed, the degree in 

mismatch between the interpolated and area-average values tends to be larger.  This 

indicates that less dense networks increase the likelihood that more distant stations will 

be influencing the interpolation, and that the interpolation of daily values are smoothed to 

lower values. 

 

In all the precipitation grids, the dry day probability of AVG is lower than that of INT-

ALL, and also the realisations with smaller networks that have nearby stations, contrary 

to the expectation that use of additional stations outside the grid box during interpolation 

would increase the number of interpolation days with rainfall.  A possible reason for this 

relates to the use of indicator kriging to estimate the dry/wet state at each 0.1 ° grid point 

prior to averaging.  This could result in a greater dry day probability on the 0.22 and 0.44 

° grids overall compared to the simple averaging used to estimate AVG.  Also, the use of 

a global variogram and a wet/dry threshold may result in biases at any single grid box. 

 

The mean and variance of AVG are noticeably different from those for INT-ALL in some 

of the grid boxes analysed here.  In three cases, the mean of AVG is less than INT-ALL 

(with the remaining two being similar) and in four cases the variance of AVG is larger.  

With only five grid boxes analysed it is difficult to arrive at a firm conclusion as to 

whether this tendency of reduced (elevated) variance (mean) is a pervasive feature of the 

full E-OBS interpolated dataset.  However, Hofstra et al. (2008) shows that the E-OBS 

data have a negative bias over a large part of the domain when they are compared to 

gridded data that have been developed with much denser station networks and are 

deemed to be closer to ‘true’ areal averages.  For the variance, the reduced variance for 
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interpolation is expected, because stations from relatively far away have been used for the 

interpolation and these stations do not share as much variance as the nearby stations used 

to estimate AVG. 

 

Another general pattern in Figure 2 is that there is a reduction in all three parameters in 

the 0.44 ° grid compared to the 0.22 ° grid.  This reduction is expected, as a quadrupling 

of the grid area will result in less shared variance across the grid.  The reduction is 

stronger in some grid-boxes, such as the Italian one, and only marginal in others, such as 

the one in Luxembourg. 

 

Figure 3 shows the results for the same analysis applied to the variance of minimum and 

maximum temperature (mean temperature results are similar and not shown here).  As for 

precipitation, spread of interpolated averages is larger for smaller network size, and tends 

to be underestimated relative to AVG, indicating that the variance is smoothed.  An 

exception is the Alpine grid box (Figure 3a), where the spread for different network sizes 

straddles the AVG value; this suggests that in areas in complex terrain such as the Alps, 

the daily values can be over or under-smoothed depending on the specific stations used in 

the interpolation.  At the Irish and Edinburgh grid boxes, the variance is increased for 

0.44 grid boxes; this may be because the area covered by the larger boxes encompass 

more land away from the coast, where temperature variance would be expected to be 

higher. 

 

We also briefly studied the influence of network density on interpolation to the individual 

0.1 degree grid-points that are then used to create the 0.44 and 0.22 ° area-averages.  The 
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underlying rationale of the E-OBS scheme is that the 0.1 ° grid estimates approximate a 

network of stations, which are then averaged together to obtain the grid box area-average 

values.  Ideally, one would therefore expect a reduction in variance when moving from 

individual 0.1 ° points to larger area-averages.  However, if a network is sparse, it is 

likely that there will already be marked variance reduction at the 0.1 ° grid points.  This 

was confirmed by Haylock et al. (2008), who find a reduction in the 10 year return level 

for precipitation in E-OBS at 0.1 ° grid points compared to the return periods in the 

underlying station data.  For all our test grid boxes, we find a general reduction in 

variance at the 0.1 ° points as the station density decreases, apart from a few of the 

realisations with a network of only four stations; in these cases, the stations by chance 

have high shared variance and this, combined with the higher variance expected when 

only four stations are interpolated, is translated to the grid points.  These effects are 

illustrated in Figure 4, for southern Ireland.  Figure 4 also shows that the variance at the 

0.1 ° points is similar to that of the 0.22 and 0.44 ° area-averages, suggesting that the 

majority of smoothing occurs during the interpolation to 0.1 ° grid points. 

 

To evaluate how the differences in wet/dry probability, mean and variance explored in 

Figure 2 and 3 translate into differences in actual precipitation and temperature, we plot 

percentiles from the fitted distributions (Figures 5 and 6).  For each station, each 

interpolated time series and AVG we calculate the 5th, 25th, 50th, 75th and 95th percentiles, 

and for the stations and INT-4 – INT-100 plot the variation in these percentiles across the 

100 realisations as box-and-whisker plots.  Broadly, the distribution of the percentiles 

reflect the same pattern as that observed for mean and variance in Figure 2 and 3.  INT-

ALL is smaller in the 95th percentile than AVG in almost all cases, except for 
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precipitation in both Irish grid-boxes (in Southern Ireland only the 0.22 degree 

resolution) for the reasons explained above.     

 

The spread in precipitation and temperature is smaller in the less extreme percentiles.  

For smaller percentiles the difference between AVG and INT-ALL becomes smaller or 

even reverses.  The spread also reduces when more stations are used for the interpolation.  

However, for precipitation this reduction is stronger than for temperature.  The difference 

between the whiskers for the 95th precipitation percentile can be as large as 13 mm in the 

case of INT-4 of Italy.  That is a difference of 51% from the mean 95th percentile of INT-

4.  For the other grid-boxes the difference is 15 – 31%.  For temperature the difference 

between the 5th and 95th percentile of the 95th temperature anomaly percentile of INT-4 is 

around 1 ºC.  In the case of minimum temperature this is around 23% of the 95th 

percentile of INT-4, in the case of maximum temperature around 20%. 

 

3.2. Extreme trends 

The effect of station network size and interpolation on trends in extreme indices is shown 

in Figure 7 and 8 for precipitation and temperature respectively.  As with the previous 

analysis, the spread in the range of trends between realisations decreases as the sub-

network density increases, due to the increased likelihood of any one of the larger sub-

networks having more stations nearby the target grid box.  In our examples, the direction 

of the trend is mostly consistent between realisations, for example R20mm for the 

Luxembourg grid boxes (Figure 7dI).  For this grid-box half of the stations within the 

search radius actually have a negative trend, but the trend is positive for almost all 
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realisations of INT-4 – INT-ALL and also at the local stations.  However, for 

precipitation sometimes there are more differences in the trends, due to the differing trend 

in precipitation indices within the grid-boxes.  For example, for RX1day in Luxembourg 

(Figure 7dIII) the interpolated data from sparse networks, until INT-50, mainly have 

positive trends, whereas the trend in all except for one station in the grid-box is negative.   

 

Of note is that the trend in AVG is often smaller than the trend in INT-ALL.  However, 

there are exceptions, such as R95p for Northern Ireland (Figure 7cII).  For temperature, 

differences between AVG and INT-ALL are generally small, suggesting that trends in 

temperature extremes in the E-OBS gridded have a higher likelihood of matching the true 

trends. 

 

Figure 7 and 8 do not show a very clear influence of the average distance to the two 

closest stations on the differences in trend.  For precipitation some trends for some grid-

boxes do seem to show an influence (for example, RX1day at the southern Ireland and 

Luxembourg grid boxes and R95p at the northern Ireland box).  For other indices for 

other grids the results are not as pronounced.  For temperature the influence of the 

average distance to the two closest stations seems slightly more apparent, mainly in FD 

and SU (Figure 8aII, bI, bII and cI). 

 

These results, especially for precipitation have two implications for the E-OBS dataset.  

First, as the E-OBS station network varies in density spatially, there is greater likelihood 

that trends in the gridded data in data-sparse areas will not be the true local trend.  

Second, as the network density in any geographical area tends to vary in time, trends in 
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any one area may reflect the appearance and disappearance of specific stations, rather 

than the true local trend. 

 

When we compare the trends in the 0.44 and 0.22 ° grid boxes, the larger grid boxes tend 

to have lower trends, indicating that the larger extremes are reduced more than smaller 

ones when expressed as areal averages of the individual 0.1 ° points.  This is illustrated in 

Figure 9, which shows the SU index for Birmingham; the larger extremes are reduced 

more for the 0.44 ° areal average, which results in a reduced trend compared to that for 

the 0.22 ° grid box.  A similar pattern might be expected when comparing time series 

from individual stations and AVG in Figure 9.  However, the difference in magnitude of 

the trend between the stations within the grid-boxes is very large, which inhibits any 

conclusions in this case.  Figure 9 also shows a different feature that is important in the 

indices R20mm and FD; when there are years that do not exceed the threshold, the index 

is zero.  Years with the index at this lower limit tend to coincide, for 0.22 and 0.44 ° time 

series, resulting in an exaggerated trend. 

 

4. Summary and conclusions 

In this paper we explored the extent to which interpolation of station networks of varying 

density over or under-smoothes gridded daily climate estimates, and also the extent to 

which trends in the indices of extreme climate are affected.  This analysis was applied to 

both precipitation and maximum and minimum temperature.  Our approach was to select 

0.22 and 0.44 ° rotated pole grid boxes from the E-OBS gridded data that contain 

sufficient stations to reliably estimate the grid-box area-average.  We then randomly 
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selected 100 combinations of sub-networks of varying size, from 4 – 250 from the full set 

of E-OBS stations that fell with the interpolation search radius for each grid box.  The 

selected sub-networks were then used to estimate grid-box area-average values using the 

same interpolation method used for the construction of the E-OBS gridded data product.  

In the first part of the study we then estimate and analyse the gamma distribution (in the 

case of precipitation) or Gaussian distribution (in the case of temperature) for all stations 

individually, each realisation of the interpolation under different sub-network densities, 

the interpolation using all stations and the simple average of the station series within the 

grid-box.  In the second part of the study we calculate extremes indices and analyse the 

dependence of trends in these indices to variations in sub-network densities. 

 

The results of the analysis of the distributions of daily values are similar for both 

precipitation and temperature.  The variance and, in case of precipitation, also the mean 

of INT-ALL are generally smaller than AVG, which suggests over-smoothing due to the 

fact that in most cases stations from outside the grid-box have been used to estimate the 

interpolated areal average, which have lower shared variance.  Only in case of the dry 

day probability there are suggestions that the indicator-kriging procedure results in too 

many dry days for most grid boxes. 

 

The spread in the area-averages based on interpolations of less dense networks is large 

and mainly directed towards lower variance and, in the case of precipitation, also dry day 

probability and mean, again a result of the lower shared variance of stations further away 

from the grid-box.  The 95th percentiles of precipitation and temperature, that are 

computed from the fitted distributions, range, when four stations are used for the 
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interpolation, in estimated values for precipitation 51% compared to the mean value for 

the 95th percentile; for temperature the range of estimates is 23%.  Significant, but 

smaller differences also occur for other percentiles.  As a rule, the interpolated percentiles 

are reduced compared to those for the area-average derived from stations in the grid box, 

suggesting that over-smoothing occurs across the full distribution, albeit to a greater 

extent for higher percentiles.   

 

The analysis of trends in extremes indices shows that the spread in trend between 

realisations is generally smaller when more stations have been used for the interpolation.  

The sign of the trend of the realisations generally agrees with the sign of the stations 

within the grid-boxes, although there are some exceptions.  This would suggest that in 

most cases trends at an individual grid box are consistent with a wider regional trend.  

The strength of any trend is generally lower for the 0.44 ° than the 0.22 ° grid boxes, 

which is caused by the fact that larger extremes are preferentially smoothed more than 

smaller extremes for larger area-averages, likely because the magnitude of these strong 

extremes are shared by fewer stations in smaller areas 

 

In some specific areas local conditions produce exceptions to the general results 

summarised above.  For example, the variation of precipitation for INT-ALL for the Irish 

grid-boxes (only the 0.22 ° box for Southern Ireland) is larger than AVG, suggesting that 

the data is not smoothed enough.  For temperature the difference between the 0.44 degree 

grid-box compared to the 0.22 degree grid-box is reversed; there is an increase in the 

temperature visible for the grids in Ireland and close to Edinburgh.  In this case the 

exception is probably realistic, as the 0.44 degree grid represents a different area with 
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larger variance than the 0.22 degree grid.  In the Alps the spread of area-average values 

tends to straddle AVG suggesting that the general smoothing observed at the other grid 

boxes may be more random in an area with complex topography. 

 

This analysis shows that the network density can introduce biases in the mean and 

variance of the E-OBS grid values compared to those expected for the true area-averages.  

In general, both the mean and variance of daily precipitation and, to a lesser extent, 

temperature of E-OBS are reduced through interpolation unless the network density is 

extremely high.  The degree of over-smoothing is greater in the more extreme percentiles, 

and in general for less dense station networks.  The same pattern of over-smoothing is 

also reflected in the extremes, where largest extremes are smoothed more for less dense 

networks, which may influence the magnitude of the trends in extreme indices.  The 

trends are also influenced by the stations used for the interpolation, indicating that the 

analysis of extreme trends in the E-OBS data may suffer from the changes over time in 

the station network used for the interpolation.  When fewer stations have been used the 

difference in smoothing between the 0.44 ° grid-boxes and 0.22 ° grid-boxes is much 

smaller than when more stations have been used.  This is because more smoothing occurs 

during interpolation to 0.1 ° grid points when the network is sparse, and this is then 

inherited by both 0.44 and 0.22 ° area-averages.  Therefore, in areas of the E-OBS grid 

where the station network is sparse, we advise to use the 0.44 degree data rather than the 

0.22 degree data, because the latter will be more over-smoothed than the 0.44 degree 

data. 
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The grid-boxes selected for this study all had a very dense station network in and around 

the grid-box, whereas most of the grid boxes in the E-OBS dataset are surrounded by a 

much sparser station network.  Figure 10 summarises the distribution of station density 

for the entire E-OBS dataset.  We do this by counting the number of stations falling 

within a series of search radii of increasing distance, on a grid-box by grid-box basis and 

then counting the proportion of grid boxes that have a given number of stations within 

each search radius.  The majority of grid-boxes have between 4 – 15 stations available 

within the maximum search radius (4 is the minimum amount of stations for which the 

interpolation has been carried out), but a very small fraction of stations have that many 

stations within 50 km of the grid-centre.  In our analysis we have shown that area-

averages derived from sparse networks (INT-4 – INT-16) results in high likelihood that 

the true area-average incorrectly estimated, and that this will tend to be an underestimate.  

Thus, a large part of the E-OBS gridded data are expected to be over-smoothed and the 

degree of smoothing will vary over time with variations in the station network. 

 

Even though the E-OBS dataset has been developed for the evaluation of RCM outputs 

and, therefore, this paper focuses on that field of study, the data can of course be used for 

many other analyses.  Haylock et al.  (2008) list studies for which the interpolated data is 

important, including monitoring of climate change, assessment of patterns of coherent 

variability and impact studies that use the climate data as driving data or for calibration.  

The high likelihood of over-smoothing should be borne in mind during any application of 

the E-OBS dataset.  For example, if the precipitation data are used for rainfall-runoff 

modelling the runoff outputs will be influenced by the underestimated larger percentiles 

of precipitation, which may cause an underestimation of flooding. 
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In this study, we have explored the issues of scaling and smoothing in one dataset of 

gridded daily data.  Many more daily gridded data have been developed with different 

station network densities and interpolation methods, where the issue of scaling has not 

been assessed (e.g., Caesar et al., 2006; Feng et al., 2004; Groot and Orlandi, 2003; 

Hewitson and Crane, 2005; Piper and Stewart, 1996; Rubel et al., 2004).  Further, the E-

OBS dataset itself could be further evaluated, for example, to identify areas and time-

periods that produce values closer to ‘true’ areal averages than others.  Scaling issues in 

the evaluation of climate models have only just started to receive more attention in 

climate science (e.g., Booij, 2002; Chen and Knutson, 2008; Fowler et al., 2005; 

McSweeney, 2007).  It is clear that the gridded data have biases that need to be 

considered in such evaluations, as in some cases mismatches between climate model and 

observations may be partly due to inaccuracies in the observational data.  It may be more 

prudent to evaluate RCMs against only those observational grid boxes that satisfy certain 

“station density” criteria, as for example Beniston et al.  (2007), Buonomo et al.  (2007), 

Huntingford et al.  (2003), Jones and Reid (2001) and Semmler and Jacob (2004) have 

done in the past.  More remains to be done to ensure that over-smoothed gridded data do 

not result in an over-smoothing RCM being incorrectly selected as the best performing 

one in an evaluation of climate models. 
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Table 1.  Details of the selected grid-boxes 

 Latitude Longitude Stations 

within the 

0.22 

degree 

grid-box 

Extra 

stations 

within the 

0.44 

degree 

grid-box 

Stations 

within the 

search 

radius 

Precipitation 

1.  Italy 45.908 11.144 11 8 172 

2.  South Ireland 51.766 -8.761 9 7 258 

3.  North Ireland 53.185 -6.533 8 11 314 

4.  Luxembourg 49.697 6.139 7 3 252 

5.  Netherlands 52.555 5.748 5 2 207 

Minimum/maximum temperature 

1.  Alps 47.132 9.678 4 1 / 2 139 / 152 

2.  Netherlands 52.047 5.160 3 0 147 / 146 

3.  Birmingham, UK 52.422 -1.967 3 1 108 / 106 

4.  Edinburg, UK 55.868 -3.252 3 1 156 / 153 

5.  Ireland 52.047 5.160 3 0 123 / 121 
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Figure 1.  Stations (*) within the search radius (1st  and 3rd columns) and within or nearby the 

grid-box (2nd and 4th columns) for five different grid-boxes for precipitation (1st and 2nd column) 

and five different grid-boxes for temperature (3rd and 4th column).  These grid-boxes correspond 

to those in Table 1.  The dotted square is the 0.22 degree grid-box, the solid square the 0.44 

degree grid-box.  The diamonds are the stations within or nearby the 0.22 degree grid, triangles 

the stations within or nearby the 0.44 degree grid-box.  Crosses are stations that do have a value 

for maximum temperature, but not for minimum temperature and plusses do have a value for 

minimum temperature, but not for maximum temperature.  The squares show the 0.1 degree grids 

within the grid-boxes. 
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Figure 2.  Dry day probability (I) and mean (II) and variance (III) of the gamma distribution for 

the grid-boxes in Italy (a), Southern Ireland (b), Northern Ireland (c), Luxembourg (d) and the 

Netherlands (e).  The colour represents the mean distance of the closest two stations that 
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contributed to the interpolation to the centre of the grid-boxes.  For each plot the first column 

represents the stations within the 0.22 degree grid-box (*) and within the 0.44 degree grid-box 

(+).  In the right part of the first column all stations within the search radius are represented.  The 

2rd to 16th column pairs represent all combinations of stations for INT-4 to INT-ALL, column pair 

17 is AVG.  The left of the column combinations is the value for the 0.22 degree grid, right for 

the 0.44 degree grid-box.  Missing values for grid-boxes a and e are due to lack of stations within 

the search radius. 
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Figure 3.  Variance of minimum temperature (I) and maximum temperature (II) for grids in the 

Alps (a), the Netherlands (b), Birmingham (c), Edinburg (d) and Ireland (e).  On the x-axis are 15 
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column pairs.  The left part of the first column depicts the stations in the 0.22 degree grid-box (*) 

and 0.44 degree grid-box (+), the right part depicts all stations within the search radius.  Columns 

2 – 14 are INT-4 – INT-ALL and column 15 is AVG.  The left part of these columns shows the 

results for the 0.22 degree grid-box and the right part for the 0.44 degree grid-box.  The colours 

represent the mean distance of the closest two stations that have contributed to the interpolation to 

the centre of the grid. 
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Figure 4.  Comparison of variance of precipitation at stations, when interpolated to 0.1 ° points, 

and at 0.22 and 0.44 ° area-averages, for the southern Ireland example.  The first two columns of 

the x-axis show the values for stations located within the 0.44 and 0.22 grid boxes.  Columns 

numbered 6 through 20 represent 0.1 ° grid points (grid-box 1-5 have no data as they are over the 

sea, see Figure 1).  The last two columns are the area-averaged data for the 0.2 and 0.44 grid 

boxes.  Grid points 7, 8, 12 and 13 contribute to the 0.22 degree grid-box and are denoted by +, 

and all other grid points are denoted by ∗ .  Values arising from different sub-network densities 

(INT-4 – INT-250) are represented by the colour (red – black for increasing density) and INT-

ALL is depicted with the large ∗. 
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Figure 5.  Dependence on different 

percentiles of the fitted Gamma distribution 

for precipitation on network density.  The 

five precipitation cases, a – e, are the same 

as in Figure 2.  The values for the 0.22 

degree grid-boxes are black and the ones for 

the 0.44 degree grid-boxes grey.  We show 

box and whisker plots for the 5th, 25th, 50th, 

75th and 95th percentile.  Each box plot 

shows the median and the 25th and 75th 

percentiles (box) and the 5th and 95th 

percentiles (whiskers) for each 100 sub-

network realisations.  Stars in the left 

column are the percentiles for stations within 

the 0.44 and 0.22 gird boxes, and stars in the 

end columns are percentiles from the single 

realisations using INT-ALL and AVG. 
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Figure 6.  Same as Figure 5, but for minimum temperature (left) and maximum temperature 

(right) in the same order of the grids as in Figure 3. 
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Figure 7.  Trend in the indices R20mm (I), R95p (II) and RX1day (III) for the same grid-boxes as 

Figure 2.  The x-axes and colours are also the same as in Figure 2.   

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-0.4

-0.2

0.0

0.2

0.4

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-10

-5

0

5

10

15

20

0 16 32 48 64

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-1

0

1

2

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-0.6

-0.4

-0.2

0.0

0.2

0.4

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-15

-10

-5

0

5

10

0 16 32 48 64

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-1.0

-0.5

0.0

0.5

1.0

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-0.6

-0.4

-0.2

0.0

0.2

0.4

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-15

-10

-5

0

5

10

15

0 16 32 48 64

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-1.0

-0.5

0.0

0.5

1.0

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-0.4

-0.2

0.0

0.2

0.4

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-10

-5

0

5

10

15

20

0 40 80 120 160

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-1.0

-0.5

0.0

0.5

1.0

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-0.1

0.0

0.1

0.2

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-4

-2

0

2

4

6

0 16 32 48 64

1 4 6 8 10 12 14 16 20 30 40 50  150  250  avg.

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

100 200  all 100 200  all 100 200  all
Number of stations Number of stations Number of stations

100 200  all 100 200  all 100 200  all
Number of stations Number of stations Number of stations

100 200  all 100 200  all 100 200  all
Number of stations Number of stations Number of stations

100 200  all 100 200  all 100 200  all
Number of stations Number of stations Number of stations

100 200  all 100 200  all 100 200  all
Number of stations Number of stations Number of stations

Trend of R20mm Trend of R95p Trend of RX1day

aI aII aIII

bI bII bIII

cI cII cIII

dI dII dIII

eI eII eIII



 40 

1 4 6 8 10 12 14 16  30  50  all  

-1.0

-0.5

0.0

0.5

1.0

1.5

1 4 6 8 10 12 14 16  30  50  all  

-0.5

0.0

0.5

0 20 40 60 80

1 4 6 8 10 12 14 16  30  50  all  

-0.15

-0.10

-0.05

0.00

0.05

0.10

1 4 6 8 10 12 14 16  30  50  all  

-0.05

0.00

0.05

0.10

1 4 6 8 10 12 14 16  30  50  all  

-1.5

-1.0

-0.5

0.0

1 4 6 8 10 12 14 16  30  50  all  

-0.2

0.0

0.2

0.4

0.6

0.8

0 30 60 90 120

1 4 6 8 10 12 14 16  30  50  all  

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

1 4 6 8 10 12 14 16  30  50  all  

0.00

0.05

0.10

1 4 6 8 10 12 14 16  30  50  all  

-1.5

-1.0

-0.5

0.0

0.5

1.0

1 4 6 8 10 12 14 16  30  50  all  

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 4 6 8 10 12 14 16  30  50  all  

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 4 6 8 10 12 14 16  30  50  all  

-0.5

0.0

0.5

1.0

1 4 6 8 10 12 14 16  30  50  all  

0.0

0.2

0.4

0.6

0 16 32 48 64

1 4 6 8 10 12 14 16  30  50  all  

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 4 6 8 10 12 14 16  30  50  all  

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 4 6 8 10 12 14 16  30  50  all  

-0.5

0.0

0.5

1.0

1 4 6 8 10 12 14 16  30  50  all  

0.0

0.2

0.4

0.6

0 30 60 90 120

1 4 6 8 10 12 14 16  30  50  all  

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 4 6 8 10 12 14 16  30  50  all  

0.02

0.04

0.06

0.08

0.10

0.12

0.14

20 40 100 avg 20 40 100 avg 20 40 100 avg 20 40 100 avg

Number of stations Number of stations Number of stations Number of stations

20 40 100 avg 20 40 100 avg 20 40 100 avg 20 40 100 avg

Number of stations Number of stations Number of stations Number of stations

20 40 100 avg 20 40 100 avg 20 40 100 avg 20 40 100 avg

Number of stations Number of stations Number of stations Number of stations

20 40 100 avg 20 40 100 avg 20 40 100 avg 20 40 100 avg

Number of stations Number of stations Number of stations Number of stations

20 40 100 avg 20 40 100 avg 20 40 100 avg 20 40 100 avg

Number of stations Number of stations Number of stations Number of stations

Trend of FD Trend of SU Trend of TXn Trend of TXx

aI aII aIII aIV

bI bII bIII bIV

cI cII cIII cIV

dI dII dIII dIV

eI eII eIII eIV

1 4 6 8 10 12 14 16  30  50  all  

0.0

0.2

0.4

0.6

0 30 60 90 120

 

Figure 8.  See Figure 7, but for the indices FD (I), SU (II), TNx (III) and TXx (IV) for the same 

grid-boxes as Figure 3.  Trends in TNx and TXx are so small that rounding of the numbers results 

in many realisations having the same values. 
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Figure 9.  The number of annual summer days in time for the grid-box close to Birmingham.  

Thin grey lines are individual station series, the thick black line is AVG, the dotted black line the 

series of the 0.22 degree grid-box for INT-ALL and the thick dashed line the series of the 0.44 

degree grid-box for INT-ALL.  Medium-thick dark grey and grey lines are the trend lines for the 

0.22 degree and 0.44 degree grid-boxes for INT-ALL respectively.  Trend lines are estimated for 

the period 1961 – 1990 only. 
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Figure 10.  The proportion of 0.22 

degree grid-boxes of the E-OBS dataset 

that have a given number of stations (y-

axis) within a given distance to the grid-

centre (x-axis) for precipitation (top), 

minimum temperature (middle) and 

maximum temperature (bottom).  All 

stations with data have been included, 

not just the ones with more than 69% of 

data available that were used in this 

study. 
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