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Abstract

We study the influence of station network densitytlee distribution and trends in
extreme indices of area-average daily precipitatiott temperature in the E-OBS high
resolution gridded dataset of daily climate overdpe, which was produced with the
primary purpose of Regional Climate Model evaluatidrue areal averages can only be
determined with reasonable accuracy from a suffttydarge number of stations within a
grid-box. However, the station network on whiclOBS is based comprises only 2316
stations, spread unevenly across approximatel\008)®2° grid-boxes. Consequently,
grid-box data in E-OBS are derived through inteagioh of stations up to 500 km
distant, with the distance of stations that contebsignificantly to any grid-box value
increasing in areas with lower station densitync8imore dispersed stations have less
shared variance, resultant interpolated valuesilaky to be over-smoothed, and
extremes even more so. We perform an experimemntfore E-OBS grid boxes for
precipitation and temperature that have a suffttyedense local station network to
enable a reasonable estimate of the “true” areeagee We then create a series of
randomly selected station sub-networks rangingzie fsom four to all stations within the
interpolation search radii. For each sub-netwegtisation, we estimate the grid-box
average applying the same interpolation methodoésgysed for E-OBS, and then
evaluate the effect of network density on the distion of daily values, as well as trends
in extremes indices. The results show that whesmfetations have been used for the
interpolation, both precipitation and temperatue@/er-smoothed, leading to a strong
tendency for interpolated daily values to be reduetative to the “true” area-average.

The smoothing is greatest for higher percentiled,therefore has a disproportionate



effect on extremes and any derived extremes indiEes many regions of the E-OBS
dataset, the station density is sufficiently loweigect this smoothing effect to be

significant and this should be borne in mind by asgrs of the E-OBS dataset.

1. Introduction

Gridded climate data are important for many reasimatuding the evaluation of climate
model outputs and detection of trends in mean ¢éraad climate extremes (e.qg.,
Haylocket al, 2008). While remotely sensed products, reanglgsation and gridded
station data have all been used for these purptheefirst three have several
disadvantages. Satellite and, for precipitatiadar data have complete coverage, but
can have significant spatio-temporal biases ang cover a relatively short period of
time (Gerstner and Heinemann, 2008; Nstval, 2001; Reynolds, 1988). Reanalysis
data, which are derived from numerical weather igteoh hindcasts with assimilated
observations, have the advantage that they ardegtjdargely homogeneous and readily
available (Hansomet al, 2007), but the data are only comparable to olasiens from
stations after 1979 in the case of temperaturerf®nset al, 2004) and for

precipitation, exhibit large errors and systemhbi&ses andHanson et al.(2007) find

that reanalysis data underestimate precipitati@hteamperature extremes significantly.
Nonetheless, reanalysis data have been used foneg¢glimate model (RCM)
evaluation (e.g. in Kjellstrom and Ruosteenoja,2d0an analysis of RCM performance
in the Baltic Sea regionYhe direct observations of climate which are nmeatlily

available are from meteorological stations, butehe a mismatch of scale between



‘point’ station observations and the areal aver@geut of climate models (Chen and

Knutson, 2008).

Gridded data derived from interpolation or arearaging of station observations are
often used to overcome the scale mismatch betwlerate models and station
observations. In some areas the station densgty flggh that only stations within each
grid box are used to estimate the grid-box arezaa@ee Some studies use these dense
areas for the evaluation of RCMs (e.g., Benigtbal, 2007; Buonomet al, 2007;
Huntingfordet al, 2003; Jones and Reid, 2001; Semmler and Jaco8),20hile for
other areas, RCMs have been evaluated using grateddeveloped with much sparser
station networks. An example of this is the sthgChristidis et al. (2005), who use the
gridded global daily temperature dataset develdysgdaesar et al.(2006) for the
evaluation of their GCM. Until recently, Europearde high-resolution daily gridded
data for Europe did not exist, despite a needdoh slata, as explained Bantos et al.
(2007), who were forced to use reanalysis andostatata for their evaluation of

precipitation outputs of GCMs.

Haylock et al.(2008) describe a new European high-resolutiordgdddataset of daily
surface temperature and precipitation for 19500620at has been developed as part of
the EU-funded ENSEMBLES project, termed the E-ORgset. E-OBS has been
developed for several purposes, including evalnaticRCMs used in the ENSEMBLES
project and for climate impacts assessments (HewdtGriggs, 2004), with a particular

emphasis on assessment of the ability of RCMsmailsited daily climate and extremes.



E-OBS is available on at four resolutions; 0.5 Gr#b° regular longitude-latitude grids,

and 0.44 and 0.22rotated-pole grids (Hayloakt al, 2008).

The aim of the E-OBS data is to represent the daigl average in each grid-box, which
is equal to the average of a sufficiently large banof stations within the grid-box.
Since outputs of RCMs are perceived to be ‘trueabaverages (Chen and Knutson,
2008; Osborn and Hulme, 1997) they would then eparable to the E-OBS area-
average estimates. However, the station netwa® tsdevelop E-OBS is variable in
space and time (Hayloak al, 2008). In addition, the station network is rielalty

sparse, comprising only 2316 stations over Eurdfaile this is an increase of an order
of magnitude compared to the data availability bketbe ENSEMBLES project started
(Klok and Klein Tank, 2008), there are approximate8,000 0.22 grid-boxes over the
European land area, so only a small fraction af baxes contain even one station.
These two issues (variability of the density of stetion network and sparseness of the
network) can potentially affect the resultant drak area-average estimates, in three

main ways.

The first possible influence concerns with the aace shared between stations that
contribute to a grid-box estimate, and which isiretd in the areal average. When fewer
than a sufficiently large number of statiomighin the grid-box are used to estimate the
average, the variance of the area-average is Iltkabe larger than the true variance, and
the estimate will not be a ‘true’ areal averagd,dmmething in between a point estimate

and an areal average.



The second potential effect on the areal averagidtsefrom the practice of using stations
outside a grid-box for the estimation of the asarage. Stations further away from
each other have a lower shared variance (e.g.ttdaiad New, 2008; Osborn and
Hulme, 1997). When stations outside a grid-boxuse to estimate the grid-box areal
average, this can result in an over-smoothing ®féiriance compared to the true grid
box average. Although most interpolation methqusyaa higher weight to stations
closer to the grid-box, this “smoothing” will besemarked for grid-boxes with stations
that are nearby, but a further consequence ighibalegree of variance smoothing

changes with station density across the grid domain

The third potential effect is that over- or undere®thing of the variance implies that
extremes are influenced more than the mean. $himsportant if the data are being used
to evaluate the ability of RCMs to simulate extremé&urther, if large extremes are

reduced more than smaller extremes, the trendesetlextremes may be reduced too.

All three of these effects are expected to be nmop®rtant for precipitation than for
temperature, because precipitation is a discontiswariable in space and time.
However, for E-OBS, the station density is lowarteEmperature than for precipitation,
which might mean that temperature is more affettad might be expected. In the case
of precipitation some studies have described meathodbtain ‘true’ areal average
information, either as parameters of their probghilistribution (McSweeney, 2007) or
as return values (Booij, 2002; Fowktral, 2005), which are then used for evaluation of
GCM or RCM outputs. However, we are unaware of stagies that focus on the scaling

issues in gridded station data themselves.



Haylock et al.(2008) briefly explored some of these scale isguascomparison of
extremes in stations and E-OBS. They show thatdtiection factor (the proportional
decrease in the return value, for precipitatiorg) #re reduction anomaly (the
proportional decrease in the anomaly for maximumpierature) decrease in all extremes
higher than the 75percentile for precipitation and the™percentile for maximum
temperature, and that these reduction factorsaiable in spaceHaylock et al.(2008)
conclude that the interpolation methodology smoethe intensity of the extremes and
that the E-OBS data should therefore be suitalslealuation of RCMs, but they do not

evaluate the extent to which over- or under-smagfhiccurs.

To improve the understanding of issues of scalkiwiE-OBS, the objective of this study
is to assess the extent to which the interpolgirmcedure used for E-OBS produces true
areal averages. We focus on the influence ofsstatetwork density on (i) the shape of
the distribution of gridded daily climate variablasd (ii) the size and trends of extreme
indices calculated from the gridded data. In #tisns that follow, we first describe the
general method with which we assess the influefisgation density, and then we

describe the results for the distribution and exts.

2. Data and methods

As we do not have true area-averages to evaluaiasigwe select grid boxes from E-
OBS that contain or are adjacent to a sufficielatge number of precipitation and

temperature stations. Since there are approxigna8000 0.22 degree land grid-boxes



in E-OBS and only 2316 stations, there are onlg fivid boxes that have sufficient
stations for our purposes for precipitation andderature respectively. Table 1 and
Figure 1 give an overview of the location of thelgyoxes, which are different for
precipitation and temperature, and show the staiior nearby the grid-boxes used to
calculate area-averages, as well as all statiothenithe search radius used in the

interpolation, which is 450 km for precipitationda®00 km for temperature.

We use the rotated pole grid for our evaluatiomaiboth 0.22 and 0.44 degree grid-
boxes so we can explore any differences in smogthinhese different scales (e.g., Chen

and Knutson, 2008).

To evaluate the effect of different station netwdénsities on the gridded estimates, we
randomly sample from the full station network witla grid-box search radius to create
“sub-networks” of different size, ranging from faior 250 stations (henceforth termed
INT-4 to INT-250). For each sub-network size, twuedred random sub-samples are
created. We use each sub-network to estimaterithdgx areal average using the same
approach as that used for E-OBS (see below). ¥edllculate an interpolated estimate
based on the full station network (INT-ALL) andimple average based on the stations
within, or very close to, the grid-box, which seagour estimate of the true spatial
average (termed AVG). As we use the grid-boxeh tie highest station density, AVG

is the closest we can get to a ‘true’ areal average

We fit the gamma and Gaussian distribution to gaisations of interpolated daily

values so we can evaluate the influence of netwensity on the full distribution of



daily precipitation and temperature respectivebymilarly, to evaluate the influence of
network density and interpolation on over- or ursi@oothing of extremes, we calculate

a range of extreme indices for each realisation.

In the remainder of this section we describe théamt data, explain the E-OBS
interpolation method and fitting of distributiorad finally define the extremes indices

that we evaluate.

2.1. Station data

We make use of the same station dataset that undehe E-OBS gridded data, which
were collated by the Royal Netherlands Meteorolalgiastitute (KNMI) in collaboration
with over 50 partners from European countries,asqf the European Climate
Assessment and Data (ECA&D) (Klok and Klein TanB02). In total, there are 2316
stations, most of which have precipitation datahwi smaller fraction having both
precipitation and temperature data. For our stuayonly use station data that fall
within the interpolation search radii of the gridxes, and that also have less than 31%
missing data (Figure 1). The density of the statietwork is variable in space and time
and by using stations with more than 69% data veeirenthat even if only 4 stations are
selected, there will be sufficient data availaloleihterpolation on a large proportion of
days and that any analysis is not overly affectedut-sampling from a changing master
network. The data have been subject to an autohgaiglity control by KNMI (Klok

and Klein Tank, 2008) so most potentially erroneouitiers have been removed.

However, in the process of our analysis, we diseEVeome problems with potential



duplicate stations in Ireland and Italy, wherew &ations with slightly different latitude
and longitude have the same values for most diitne These issues have been
reported to KNMI and they will be addressed betbeenext version of E-OBS. We use
the full period of the dataset, 1950-2006 for aualgsis, except when we assess the
effect network density and smoothing on trendsxineenes, where we use the 1961-1990

period.

2.2. Interpolation

We employ the same interpolation procedure usgaddduce E-OBS (Haylockt al,
2008), but apply it to each of the realisationstation networks of different density. For
any one sub-network realisation, the 15 closetibstare selected. If there are fewer
than 15 stations in the search radius (450 anckBOfor precipitation and temperature,
respectively) all stations are selected. If treefewer than four stations available, the

interpolation is not undertaken, and the grid vdardhat day is set to missing.

For the E-OBS dataset, daily values are interpdlata three-phase process (Hayletk
al., 2008). Monthly values are first interpolatedngsihin-plate splines onto a C.3rid.
Thereafter daily anomalies are interpolated sephranto the same 071grid using
ordinary kriging for temperature, or for precipitet, indicator kriging (Barancourt and
Creutin, 1992) to determine the state (wet or doflpwed by ordinary kriging for
precipitation amount at locations whose state is Wée 0.1° monthly and daily
anomaly fields are then combined and averagedttrohrea-average estimates for the

E-OBS 0.25 (0.22) and 0.5 (0.44) cartesian (rotptdd) grids.
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For this study, we only interpolate daily anomafiesn the multiple sub-networks, as it
has been shown elsewhere (Hayletlal, 2008) that any smoothing of gridded daily
values and extremes occurs at this stage of teepilation rather than after combination
with monthly values. We employ the global variagsadefined for E-OBS rather than
defining a new variogram for this test case. Baelisation of daily anomalies is then
combined with the existing E-OBS monthly fields #h@2 and 0.44 area-averages are
calculated, to enable distributions to be fitted artremes indices to be computed.
Results for the 0.25 and 0.8@rids are virtually identical to the 0.22 and 0%4g¥ids, so

we only report results for the latter here.

2.3. Distributions

To quantify the influence of interpolation undeffelient station densities on the
distribution of our climate variables, we fit thargma distribution to precipitation data
and Gaussian distributions to the temperature det@ gamma distribution is fitted
using theThom(1958) maximum likelihood method, after which #f@pe ¢) and scale
(B) parameters are used to obtain the me#&p)(@and the variance:f %) of the
distribution. Since the gamma distribution is ofifed for days with precipitation (> 0.5
mm), we also calculate the dry day probability.r teonperature we use the method of
moments (Wilks, 2006) to fit the Gaussian disttidw to the anomalies from the
monthly mean (to remove the seasonal cycle of teatypes), and then analyse the
variance (for temperature, the mean is not stroaffcted — not shown). To determine

how well the chosen distributions fit the data,wse quantile-quantile (Q-Q) plots. For
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precipitation, minimum temperature and maximum terajure for each grid-box we
have plotted Q-Q plots for selected time serie$ $hown). For precipitation the fitted
gamma distribution fits the data of the stationgdvehan the interpolated data or the
average of the station data within the grid-boxesmany cases of the former the
distribution fits the data well until at least t9@" percentile. However, in case of the
gridded data the fitted distribution begins to dgefrom the data from the 90

percentile onwards, which may be due to possibleoshing of the interpolated data.
However, the deviation from the fitted distributisnso small that we assume that the
gamma distribution fits well until at least the"98ercentile. For temperature the results
for maximum temperature are generally slightly éretthan for minimum temperature. In

all cases the distribution fits the data well uatileast the 95percentile.

2.4. Extreme indices and trends

To investigate the influence of interpolation atatisn density on the extremes of

precipitation and temperature and on the trendiseése extremes, we calculate a subset

of the standard extremes indices defined by theeExjpam on Climate Change

Detection and Indices (ETCCD)

— R20mm: the annual number of days with daily preatmn larger than or equal to 20
mm

— RXlday: the annual maximum precipitation on onglsiay

— R95p: the sum of the precipitation on all days dmclv precipitation is larger than the

95" percentile

! ETCCDI meets under the auspices of the joint WMn@ission for Climatology, CLIVAR, Joint-
WMO-10C Technical Commission for Oceanography aratilte Meteorology.
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— TXx: the annual maximum of the daily maximum tengtere

— TNx: the annual maximum of the daily minimum tengiare

— SU: summer days, the annual number of days on whillaily maximum
temperature is above 25 °C

— FD: frost days, the annual number of days on wthehdaily minimum temperature is
below 0 °C

These indices are relatively easy to interpret cneqhto some of the other indices, and

also test a range of generic types of indices:gueiles, annual maxima and number of

days above or below a threshold. All indices ateamined using the FClimDex

programme (available from: http://cccma.seos.usai&& CCDMI/).

A number of approaches for trend analysis of exéeirave been used. Linear
regressions trends have been used bykgn Tank and Konne(2003)andGroisman

et al. (2005), whileAlexander et al.(2006) use the nonparametric Kendall’s tau based
slope estimator to estimate the trends that isdessitive to outliers. Here we employ
the more widely used least-squares linear regnesgproach. We use the period 1961-
1990 because the station network density is highedkis period. Using different
periods will give different trends, but we are miderested in the trends as such, but in
the differences in trend between the interpolatizased on different network densities,

so any single analysis period will serve to elut@dhese differences.

Inhomogeneous data could result in biased treMimy stations used for the E-OBS
interpolation, as well as the E-OBS dataset itéslfje potential inhomogeneities (Hofstra

et al, 2008). However, since in this study we are anlgrested in the influence of
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interpolation and station density on the extremrmeka@n trends in these extremes, any
inhomogeneities will not affect our specific aimdowever, the values of calculated
trends from this study should not be seen as rexadis for certain areas, as they may

have been influenced by inhomogeneities.

3. Results

3.1. Distribution

Figure 2 shows, for precipitation, the dependencstation density of dry day
probability, mean and variance of the gamma distidim for the five grid-boxes
analysed. We also show results for each individtation (not interpolated), for an
interpolation based on all available stations, asldoccur in E-OBS, and the simple
average calculated using the stations within afacadt to the grid box. We note that
the patterns for seasonal data (not shown) arsaime (though with different absolute

values) as those for annual data shown in Figure 2.

A similar general pattern emerges for each test,cg@bkere the spread in parameters is
largest for small networks, narrowing and approaghine estimated area-average as the
number of stations available to sample from ina@easAs might be expected, the spread
of parameters at individual stations is even largédre spread of the interpolated
realisations is mainly directed towards lower valtlean the area-average, indicating that
the tendency is for both the mean and variancaiby grecipitation to be

underestimated, and that the dry-day probabiligls® underestimated. We also show

(using colour) the average distance of the twoestatations used in the interpolation;
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for any sub-network size, when the nearest stanomsnore dispersed, the degree in
mismatch between the interpolated and area-aveiges tends to be larger. This
indicates that less dense networks increase tahdod that more distant stations will
be influencing the interpolation, and that theiptgation of daily values are smoothed to

lower values.

In all the precipitation grids, the dry day probgypiof AVG is lower than that of INT-
ALL, and also the realisations with smaller netvsotikat have nearby stations, contrary
to the expectation that use of additional statmuiside the grid box during interpolation
would increase the number of interpolation day$wainfall. A possible reason for this
relates to the use of indicator kriging to estintheedry/wet state at each O0.f§rid point
prior to averaging. This could result in a greabgr day probability on the 0.22 and 0.44
° grids overall compared to the simple averaginglusesstimate AVG. Also, the use of

a global variogram and a wet/dry threshold mayltésiiases at any single grid box.

The mean and variance of AVG are noticeably diffefeom those for INT-ALL in some
of the grid boxes analysed here. In three caBesnpean of AVG is less than INT-ALL
(with the remaining two being similar) and in faiases the variance of AVG is larger.
With only five grid boxes analysed it is difficuti arrive at a firm conclusion as to
whether this tendency of reduced (elevated) vaedmean) is a pervasive feature of the
full E-OBS interpolated dataset. Howeudnfstra et al.(2008) shows that the E-OBS
data have a negative bias over a large part adah®in when they are compared to
gridded data that have been developed with muchadestation networks and are

deemed to be closer to ‘true’ areal averages.thievariance, the reduced variance for
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interpolation is expected, because stations frdatively far away have been used for the
interpolation and these stations do not share atmariance as the nearby stations used

to estimate AVG.

Another general pattern in Figure 2 is that thera reduction in all three parameters in
the 0.44° grid compared to the 0.2yrid. This reduction is expected, as a quadrgplin
of the grid area will result in less shared vareaacross the grid. The reduction is
stronger in some grid-boxes, such as the Italian and only marginal in others, such as

the one in Luxembourg.

Figure 3 shows the results for the same analygqibeapto the variance of minimum and
maximum temperature (mean temperature resultsraif@sand not shown here). As for
precipitation, spread of interpolated averagearngdr for smaller network size, and tends
to be underestimated relative to AVG, indicatingtttihe variance is smoothed. An
exception is the Alpine grid box (Figure 3a), where spread for different network sizes
straddles the AVG value; this suggests that insamreaomplex terrain such as the Alps,
the daily values can be over or under-smoothedribpg on the specific stations used in
the interpolation. At the Irish and Edinburgh gboioixes, the variance is increased for
0.44 grid boxes; this may be because the area@d\mrthe larger boxes encompass
more land away from the coast, where temperatuianae would be expected to be

higher.

We also briefly studied the influence of networkisiéy on interpolation to the individual

0.1 degree grid-points that are then used to cthat8.44 and 0.22area-averages. The
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underlying rationale of the E-OBS scheme is thatQi° grid estimates approximate a
network of stations, which are then averaged tagedthobtain the grid box area-average
values. Ideally, one would therefore expect a cédn in variance when moving from
individual 0.1° points to larger area-averages. However, if avold is sparse, it is

likely that there will already be marked varianeduction at the 0.1grid points. This
was confirmed bydaylock et al(2008), who find a reduction in the 10 year retiesrel

for precipitation in E-OBS at 0.°1grid points compared to the return periods in the
underlying station data. For all our test grid &xwe find a general reduction in
variance at the 0.1points as the station density decreases, apantdrtew of the
realisations with a network of only four statioimsthese cases, the stations by chance
have high shared variance and this, combined Wwéthtgher variance expected when
only four stations are interpolated, is translatethe grid points. These effects are
illustrated in Figure 4, for southern Ireland. UHig 4 also shows that the variance at the
0.1° points is similar to that of the 0.22 and 0%4&rea-averages, suggesting that the

majority of smoothing occurs during the interpadatto 0.1° grid points.

To evaluate how the differences in wet/dry probghimean and variance explored in
Figure 2 and 3 translate into differences in agwetipitation and temperature, we plot
percentiles from the fitted distributions (Figuteand 6). For each station, each
interpolated time series and AVG we calculate the25", 50", 75" and 94' percentiles,
and for the stations and INT-4 — INT-100 plot tliation in these percentiles across the
100 realisations as box-and-whisker plots. Brogitilg distribution of the percentiles
reflect the same pattern as that observed for rapdrvariance in Figure 2 and 3. INT-

ALL is smaller in the 98 percentile than AVG in almost all cases, except fo
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precipitation in both Irish grid-boxes (in Southéreland only the 0.22 degree

resolution) for the reasons explained above.

The spread in precipitation and temperature is lemial the less extreme percentiles.

For smaller percentiles the difference between AAr@ INT-ALL becomes smaller or
even reverses. The spread also reduces when tations are used for the interpolation.
However, for precipitation this reduction is strenghan for temperature. The difference
between the whiskers for the™precipitation percentile can be as large as 13imifne
case of INT-4 of ltaly. That is a difference of6from the mean $5percentile of INT-

4. For the other grid-boxes the difference is T1%. For temperature the difference
between the 5and 9%' percentile of the 95temperature anomaly percentile of INT-4 is
around 1 °C. In the case of minimum temperattigeisharound 23% of the 85

percentile of INT-4, in the case of maximum tempa@around 20%.

3.2. Extreme trends

The effect of station network size and interpolatim trends in extreme indices is shown
in Figure 7 and 8 for precipitation and temperatespectively. As with the previous
analysis, the spread in the range of trends betnesdisations decreases as the sub-
network density increases, due to the increasetiiixod of any one of the larger sub-
networks having more stations nearby the targetigok. In our examples, the direction
of the trend is mostly consistent between reabsati for example R20mm for the
Luxembourg grid boxes (Figure 7dl). For this dgoolx half of the stations within the

search radius actually have a negative trend,Heutrend is positive for almost all
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realisations of INT-4 — INT-ALL and also at the &stations. However, for
precipitation sometimes there are more differemeéise trends, due to the differing trend
in precipitation indices within the grid-boxes. rlexample, for RX1day in Luxembourg
(Figure 7dlll) the interpolated data from sparsevoeks, until INT-50, mainly have

positive trends, whereas the trend in all excepofe station in the grid-box is negative.

Of note is that the trend in AVG is often smallean the trend in INT-ALL. However,
there are exceptions, such as R95p for Northetande(Figure 7cll). For temperature,
differences between AVG and INT-ALL are generaltyadl, suggesting that trends in
temperature extremes in the E-OBS gridded havgl#ahiikelihood of matching the true

trends.

Figure 7 and 8 do not show a very clear influerah® average distance to the two
closest stations on the differences in trend. gfecipitation some trends for some grid-
boxes do seem to show an influence (for examplel,da) at the southern Ireland and
Luxembourg grid boxes and R95p at the northeramebox). For other indices for
other grids the results are not as pronounced.tdrgperature the influence of the
average distance to the two closest stations sekghsly more apparent, mainly in FD

and SU (Figure 8all, bl, bll and cl).

These results, especially for precipitation have implications for the E-OBS dataset.
First, as the E-OBS station network varies in dgrepatially, there is greater likelihood
that trends in the gridded data in data-sparsesavébnot be the true local trend.

Second, as the network density in any geographrea tends to vary in time, trends in
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any one area may reflect the appearance and desapwe of specific stations, rather

than the true local trend.

When we compare the trends in the 0.44 and Odtl boxes, the larger grid boxes tend
to have lower trends, indicating that the largdresres are reduced more than smaller
ones when expressed as areal averages of thedadiVvd.1° points. This is illustrated in
Figure9, which shows the SU index for Birmingham; the &rgxtremes are reduced
more for the 0.44 areal average, which results in a reduced trengpaoed to that for
the 0.22° grid box. A similar pattern might be expected witemparing time series
from individual stations and AVG in Figure 9. Howee, the difference in magnitude of
the trend between the stations within the grid-lsdgevery large, which inhibits any
conclusions in this case. Figure 9 also showsferdnt feature that is important in the
indices R20mm and FD; when there are years thabtlexceed the threshold, the index
is zero. Years with the index at this lower liteihd to coincide, for 0.22 and 0.44ime

series, resulting in an exaggerated trend.

4. Summary and conclusions

In this paper we explored the extent to which jmdéation of station networks of varying
density over or under-smoothes gridded daily clevesdtimates, and also the extent to
which trends in the indices of extreme climateaifected. This analysis was applied to
both precipitation and maximum and minimum temperat Our approach was to select
0.22 and 0.44 rotated pole grid boxes from the E-OBS griddecdlaat contain
sufficient stations to reliably estimate the grioklarea-average. We then randomly
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selected 100 combinations of sub-networks of vargiae, from 4 — 250 from the full set
of E-OBS stations that fell with the interpolatisgarch radius for each grid box. The
selected sub-networks were then used to estimatdgk area-average values using the
same interpolation method used for the construaifdhe E-OBS gridded data product.
In the first part of the study we then estimate andlyse the gamma distribution (in the
case of precipitation) or Gaussian distributiontfie case of temperature) for all stations
individually, each realisation of the interpolationder different sub-network densities,
the interpolation using all stations and the singderage of the station series within the
grid-box. In the second part of the study we dakeuextremes indices and analyse the

dependence of trends in these indices to variatioaab-network densities.

The results of the analysis of the distributionslaty values are similar for both
precipitation and temperature. The variance andase of precipitation, also the mean
of INT-ALL are generally smaller than AVG, whichggests over-smoothing due to the
fact that in most cases stations from outside tltelgpx have been used to estimate the
interpolated areal average, which have lower sheaednce. Only in case of the dry
day probability there are suggestions that thecatdr-kriging procedure results in too

many dry days for most grid boxes.

The spread in the area-averages based on integraatf less dense networks is large
and mainly directed towards lower variance andhecase of precipitation, also dry day
probability and mean, again a result of the lowered variance of stations further away
from the grid-box. The $5percentiles of precipitation and temperature, nat

computed from the fitted distributions, range, wif@ur stations are used for the
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interpolation, in estimated values for precipitatil% compared to the mean value for
the 95th percentile; for temperature the rangesbfrates is 23%. Significant, but
smaller differences also occur for other percesitilas a rule, the interpolated percentiles
are reduced compared to those for the area-avdmged from stations in the grid box,
suggesting that over-smoothing occurs across thditribution, albeit to a greater

extent for higher percentiles.

The analysis of trends in extremes indices showassthie spread in trend between
realisations is generally smaller when more statimewve been used for the interpolation.
The sign of the trend of the realisations generadjsees with the sign of the stations
within the grid-boxes, although there are some gtxaes. This would suggest that in
most cases trends at an individual grid box areistent with a wider regional trend.
The strength of any trend is generally lower far €h44° than the 0.22 grid boxes,

which is caused by the fact that larger extremegpezferentially smoothed more than
smaller extremes for larger area-averages, likebabse the magnitude of these strong

extremes are shared by fewer stations in smakasar

In some specific areas local conditions produceptxans to the general results
summarised above. For example, the variation@dipitation for INT-ALL for the Irish
grid-boxes (only the 0.22box for Southern Ireland) is larger than AVG, sesjing that
the data is not smoothed enough. For temperaterditference between the 0.44 degree
grid-box compared to the 0.22 degree grid-boxvensed; there is an increase in the
temperature visible for the grids in Ireland anokel to Edinburgh. In this case the

exception is probably realistic, as the 0.44 degrekrepresents a different area with
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larger variance than the 0.22 degree grid. InAtips the spread of area-average values
tends to straddle AVG suggesting that the genenabshing observed at the other grid

boxes may be more random in an area with compleagi@phy.

This analysis shows that the network density c&noduce biases in the mean and
variance of the E-OBS grid values compared to tleagpected for the true area-averages.
In general, both the mean and variance of dailgipition and, to a lesser extent,
temperature of E-OBS are reduced through interjpolainless the network density is
extremely high. The degree of over-smoothing &atgr in the more extreme percentiles,
and in general for less dense station networkse seme pattern of over-smoothing is
also reflected in the extremes, where largest mdseare smoothed more for less dense
networks, which may influence the magnitude oftteads in extreme indices. The
trends are also influenced by the stations useth®mterpolation, indicating that the
analysis of extreme trends in the E-OBS data mé#grsiutom the changes over time in

the station network used for the interpolation. aWvewer stations have been used the
difference in smoothing between the 0%4grid-boxes and 0.22grid-boxes is much
smaller than when more stations have been use.isSThecause more smoothing occurs
during interpolation to 0.1 grid points when the network is sparse, and gthén
inherited by both 0.44 and 0.22rea-averages. Therefore, in areas of the E-OBS g
where the station network is sparse, we advissedahe 0.44 degree data rather than the
0.22 degree data, because the latter will be megesmoothed than the 0.44 degree

data.
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The grid-boxes selected for this study all hadrg dense station network in and around
the grid-box, whereas most of the grid boxes inBH@BS dataset are surrounded by a
much sparser station network. Figure 10 summatisedistribution of station density
for the entire E-OBS dataset. We do this by cawgnthe number of stations falling
within a series of search radii of increasing dist on a grid-box by grid-box basis and
then counting the proportion of grid boxes thatédhawgiven number of stations within
each search radius. The majority of grid-boxesHhztween 4 — 15 stations available
within the maximum search radius (4 is the minimammount of stations for which the
interpolation has been carried out), but a verylsfraetion of stations have that many
stations within 50 km of the grid-centre. In onalysis we have shown that area-
averages derived from sparse networks (INT-4 — 18] results in high likelihood that
the true area-average incorrectly estimated, aatcthis will tend to be an underestimate.
Thus, a large part of the E-OBS gridded data ape&ed to be over-smoothed and the

degree of smoothing will vary over time with vaiaeis in the station network.

Even though the E-OBS dataset has been develop#uefevaluation of RCM outputs
and, therefore, this paper focuses on that fielstudy, the data can of course be used for
many other analysegdaylock et al.(2008) list studies for which the interpolated data
important, including monitoring of climate changssessment of patterns of coherent
variability and impact studies that use the clingdta as driving data or for calibration.
The high likelihood of over-smoothing should beri®m mind during any application of
the E-OBS dataset. For example, if the precigitatiata are used for rainfall-runoff
modelling the runoff outputs will be influenced the underestimated larger percentiles

of precipitation, which may cause an underestinmadioflooding.
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In this study, we have explored the issues of sgand smoothing in one dataset of
gridded daily data. Many more daily gridded daaehbeen developed with different
station network densities and interpolation methodegere the issue of scaling has not
been assessed (e.g., Caegal, 2006; Fenget al, 2004; Groot and Orlandi, 2003;
Hewitson and Crane, 2005; Piper and Stewart, 1886glet al, 2004). Further, the E-
OBS dataset itself could be further evaluatedef@mple, to identify areas and time-
periods that produce values closer to ‘true’ ase@rages than others. Scaling issues in
the evaluation of climate models have only justtsthto receive more attention in
climate science (e.g., Booij, 2002; Chen and Kmut2608; Fowleet al, 2005;
McSweeney, 2007). Itis clear that the griddecdhatve biases that need to be
considered in such evaluations, as in some casratthes between climate model and
observations may be partly due to inaccuracieberobservational data. It may be more
prudent to evaluate RCMs against only those obtiena grid boxes that satisfy certain
“station density” criteria, as for examgeniston et al.(2007),Buonomo et al(2007),
Huntingford et al.(2003),Jones and Rei(2001) andSemmler and Jacaf2004) have
done in the past. More remains to be done to ertbat over-smoothed gridded data do
not result in an over-smoothing RCM being incofseselected as the best performing

one in an evaluation of climate models.
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Table 1. Details of the selected grid-boxes

Latitude Longitude  Stations Extra Stations
within the  stations within the
0.22 within the  search
degree 0.44 radius
grid-box degree
grid-box
Precipitation
1. ltaly 45.908 11.144 11 8 172
2. South Ireland 51.766 -8.761 9 7 258
3. North Ireland 53.185 -6.533 8 11 314
4. Luxembourg 49.697 6.139 7 3 252
5. Netherlands 52.555 5.748 5 2 207
Minimum/maximum temperature
1. Alps 47.132 9.678 4 1/2 139/152
2. Netherlands 52.047 5.160 3 0 147/ 146
3. Birmingham, UK 52.422 -1.967 3 1 108/ 106
4. Edinburg, UK 55.868 -3.252 3 1 156/ 153
5. Ireland 52.047 5.160 3 0 123/121

30



Figurel. Stations (*) within the search radius (1st and&limns) and within or nearby the

grid-box (2“ and 4th columns) for five different grid-boxes foecipitation (1 and 2° column)

and five different grid-boxes for temperatur& ghd 4' column). These grid-boxes correspond
to those in Table 1. The dotted square is the @e2Ree grid-box, the solid square the 0.44
degree grid-box. The diamonds are the statiortsmdr nearby the 0.22 degree grid, triangles
the stations within or nearby the 0.44 degree hadg- Crosses are stations that do have a value
for maximum temperature, but not for minimum tenapere and plusses do have a value for
minimum temperature, but not for maximum tempegrturhe squares show the 0.1 degree grids

within the grid-boxes.
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Figure2. Dry day probability (I) and mean (Il) and variant®) of the gamma distribution for

the grid-boxes in Italy (a), Southern Ireland (#@rthern Ireland (c), Luxembourg (d) and the

Netherlands (e). The colour represents the mesdardie of the closest two stations that
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contributed to the interpolation to the centrehaf grid-boxes. For each plot the first column
represents the stations within the 0.22 degreelgrid(*) and within the 0.44 degree grid-box

(+). In the right part of the first column all 8tas within the search radius are representect Th
2 to 16" column pairs represent all combinations of statifam INT-4 to INT-ALL, column pair
17 is AVG. The left of the column combinationghis value for the 0.22 degree grid, right for
the 0.44 degree grid-box. Missing values for drickes a and e are due to lack of stations within

the search radius.
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column pairs. The left part of the first columrpiés the stations in the 0.22 degree grid-box (*)
and 0.44 degree grid-box (+), the right part depédt stations within the search radius. Columns
2 —14 are INT-4 — INT-ALL and column 15 is AVG.h@& left part of these columns shows the
results for the 0.22 degree grid-box and the nigtnt for the 0.44 degree grid-box. The colours
represent the mean distance of the closest twiorssahat have contributed to the interpolation to

the centre of the grid.
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for precipitation on network density. The
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Figure6. Same as Figure 5, but for minimum temperature) (fgftt maximum temperature

(right) in the same order of the grids as in Figdire
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Figure7. Trend in the indices R20mm (1), R95p (II) and RXytdHl) for the same grid-boxes as

Figure 2. The x-axes and colours are also the sanmeFigure 2.
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Figure8. See Figure 7, but for the indices FD (1), SU (TINx (IlI) and TXx (IV) for the same
grid-boxes as Figure 3. Trends in TNx and TXxsresmall that rounding of the numbers results

in many realisations having the same values.
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Figure9. The number of annual summer days in time for thalgox close to Birmingham.

Thin grey lines are individual station series, tthiek black line is AVG, the dotted black line the
series of the 0.22 degree grid-box for INT-ALL ahd thick dashed line the series of the 0.44
degree grid-box for INT-ALL. Medium-thick dark greand grey lines are the trend lines for the
0.22 degree and 0.44 degree grid-boxes for INT-Addpectively. Trend lines are estimated for

the period 1961 — 1990 only.
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